RF \& MICROWAVE TEST ACCESSORIES

Amplifiers 644
Custom Switch Interfaces 645
RF \& Microwave Switches 646
Programmable, Step, Fixed Attenuators 654
Power Limiters 659
DC Blocks 660
Coaxial Detectors 5 661Couplers663

Amplifiers

83006A
83017A
83018A
83020A
83050A
83051A
87405B
87405C
87415A

- Ultra broadband to 50 GHz
- Up to 1 watt output power
- Compact size

Microwave System Amplifiers

Use these amplifiers to increase output power from microwave sources and to increase test system measurement speed with improved dynamic range. Drive a variety of narrowband travelling wave tubes with a single driver solution that is highly reliable and low in cost to maintain year after year. With excellent noise figure relative to its broad bandwidth and high gain, these amplifiers can make significant improvement to system noise figure. By using feedback to an external source ALC input, system designers can level output power at the test port, negating the effects of post sweeper reflections and losses. Place power where you need it with a remotely-locatable DC power supply. The amplifier and the power supply are provided with a $2-\mathrm{m}$ DC bias cable.

Agilent $87405 \mathrm{~B} / \mathrm{C}$ preamplifiers operate from 100 MHz up to 18 GHz . The reliable gain and low noise figure of these preamplifiers help reduce system errors and improve the overall system performance. A convenient probe-power bias, makes the portable 87405B/C preamplifiers ideal as front end preamplifiers for a variety of Agilent instrument such as PSA, ESA and MXA spectrum analyzers.

Specifications $\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+30^{\circ} \mathrm{C}\right)$

Model	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	Power out Psat (dBm)	Power out P1dBC (dBm)	Gain dB (min)	Noise Figure (dB typ.)	Detected Output	DC Bias volt/amp	RF Connectors (Input/Output)
83006A	0.01 to 26.5	+18 typ. 0.01 to 10 GHz +16 typ. 10 to 20 GHz +14 typ. 20 to 26.5 GHz	$\begin{aligned} & +13,0.01 \text { to } 20 \mathrm{GHz} \\ & +10,20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	20	$13,0.01$ to 0.1 GHz $8,0.1$ to 18 GHz 13,18 to 26.5 GHz	No	$\begin{aligned} & +12 \mathrm{~V} \text { at } 450 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83017A	0.5 to 26.5	$\begin{aligned} & +20 \text { typ. } 0.5 \text { to } 20 \mathrm{GHz} \\ & +15 \text { typ. } 20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +18,0.5 \text { to } 20 \mathrm{GHz} \\ & +13,20 \text { to } 26.5 \mathrm{GHz}^{* * *} \end{aligned}$	25	$8,0.5$ to 20 GHz 13,20 to 26.5 GHz	Yes	$\begin{aligned} & +12 \mathrm{~V} \text { at } 700 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83018A	2 to 26.5	$\begin{aligned} & \text { +24, } 2 \text { to } 20 \mathrm{GHz} \\ & \text { +21, } 20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { +22, } 2 \text { to } 20 \mathrm{GHz} \\ & +17,20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 27,2 \text { to } 20 \mathrm{GHz} \\ & 23,20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10,2 \text { to } 20 \mathrm{GHz} \\ & 13,20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Yes	$\begin{aligned} & +12 \mathrm{~V} \text { at } 2 \mathrm{~A} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83020A	2 to 26.5	$\begin{aligned} & +30,2 \text { to } 20 \mathrm{GHz} \\ & +30,20 \text { to } 26.5 \mathrm{GHz}^{*} \end{aligned}$	$\begin{aligned} & +28,2 \text { to } 20 \mathrm{GHz} \\ & +28,20 \text { to } 26.5 \mathrm{GHz}^{*} \end{aligned}$	$\begin{aligned} & 30,2 \text { to } 20 \mathrm{GHz} \\ & 27,20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10,2 \text { to } 20 \mathrm{GHz} \\ & 13,20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Yes	$\begin{aligned} & +15 \mathrm{~V} \text { at } 3.2 \mathrm{~A} \\ & -15 \mathrm{~V} \text { at } 40 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83050A	2 to 50	$\begin{aligned} & +20,2 \text { to } 40 \mathrm{GHz} \\ & +19,40 \text { to } 50 \mathrm{GHz}^{* *} \end{aligned}$	$\begin{aligned} & +15,2 \text { to } 40 \mathrm{GHz} \\ & +13,40 \text { to } 50 \mathrm{GHz} \end{aligned}$	21	6,2 to 26.5 GHz $10,26.5$ to 50 GHz	No	$\begin{aligned} & +12 \mathrm{~V} \text { at } 830 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	2.4 mm (f)
83051A	0.045 to 50	$+12,0.045 \text { to } 45 \mathrm{GHz}$ $+10,45 \text { to } 50 \mathrm{GHz}$	$\begin{aligned} & +8,0.045 \text { to } 45 \mathrm{GHz} \\ & +6,45 \text { to } 50 \mathrm{GHz} \end{aligned}$	23	$12,0.045$ to 2 GHz 6,2 to 26.5 GHz 10, 26.5 to 50 GHz	No	$\begin{aligned} & +12 \mathrm{~V} \text { at } 425 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	2.4 mm (f)
87405B	0.01 to 4	+10 typ.	+8	22-27	5	No	+15 V at 105 mA	$\mathrm{N}(\mathrm{f}) / \mathrm{N}(\mathrm{m})$
87405C	0.1 to 18	+18 typ. 0.1 to 4 GHz +17 typ. 4 to 18 GHz	$\begin{aligned} & +15,0.1 \text { to } 4 \mathrm{GHz} \\ & +14,4 \text { to } 18 \mathrm{GHz} \end{aligned}$	25	$\begin{aligned} & 6,0.1 \text { to } 4 \mathrm{GHz} \\ & 4.5,4 \text { to } 18 \mathrm{GHz} \end{aligned}$	No	$\begin{aligned} & +15 \mathrm{~V} \text { at } 140 \mathrm{~mA} \\ & -15 \mathrm{~V} \text { at } 140 \mathrm{~mA} \\ & 0 \mathrm{~V} \text { at } 140 \mathrm{~mA} \end{aligned}$	$\mathrm{N}(\mathrm{f}) / \mathrm{N}(\mathrm{m})$
87415A	2 to 8	+26 typ.	+23	25	13	No	+12 V at 900 mA	SMA (f)

*** $-0.7 \mathrm{~dB} / \mathrm{GHz}(20<f<26.5)$
${ }^{* *}-0.2 \mathrm{~dB} / \mathrm{GHz}(40<\mathrm{f}<50)$
${ }^{* * *}-0.75 \mathrm{~dB} / \mathrm{GHz}(20<\mathrm{f}<26.5)$

Dimensions
83006A, 83017A, 83050A, 83051A, 87415A: $45 \mathrm{~mm} \mathrm{H} \times 103 \mathrm{~mm} \mathrm{~W} x$
132 mm L (1.8 in $\times 4$ in $\times 5.2$ in)
83018A: $76 \mathrm{~mm} \mathrm{H} \times 114 \mathrm{~mm} \mathrm{~W} \times 212 \mathrm{~mm} \mathrm{~L}(8.3 \mathrm{in} \times 3$ in $\times 4.5 \mathrm{in})$
83020A: $87 \mathrm{~mm} \mathrm{H} \times 202 \mathrm{~mm} \mathrm{~W} \times 275 \mathrm{~mm} \mathrm{~L}(10.8 \mathrm{in} \times 3.4 \mathrm{in} \times 8 \mathrm{in})$
87405B: $28 \mathrm{~mm} \mathrm{H} \times 28 \mathrm{~mm} \mathrm{~W} \times 110 \mathrm{~mm} \mathrm{~L}$ ($1.1 \mathrm{in} \times 1.1 \mathrm{in} \times 4.3 \mathrm{in})$
87405C: $40.3 \mathrm{~mm} \mathrm{H} \times 18 \mathrm{~mm} \mathrm{~W} \times 98.3 \mathrm{~mm} \mathrm{~L}$
Weight
83006A, 83017A, 83050A, 83051A, 87415A: . $64 \mathrm{~kg}(1.4 \mathrm{lb})$;
83018A: $1.8 \mathrm{~kg}(4 \mathrm{lb}) ; 83020 \mathrm{~A}: 3.9 \mathrm{~kg}(8.5 \mathrm{lb}) ;$
87405B: $0.233 \mathrm{~kg}(0.6 \mathrm{lb})$
87405C: $0.22 \mathrm{~kg}(0.485 \mathrm{lb})$

Bias Cable
2-m cable with a connector on one end and bare wires on the other, shipped with the amplifiers below
83006A, 83017A, 83018A, 83050A, 83051A, 87415A: p/n 83006-60004
83020A: p/n 83020-60004
2-m cable to connect between amplifier and power supplies, shipped with power supplies below
87421A: p/n 83006-60005
87422A: p / n 87422-60001, 83006-60005

Power Supply	AC Input Voltage	DC Output Voltage/Current	Output Power	Size (H, W, D)
87421A	$\begin{aligned} & 100 \text { to } 240 \text { VAC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	+12 V at $2.0 \mathrm{~A},-12 \mathrm{~V}$ at 200 mA	25 W max	$57 \mathrm{~mm}, 114 \mathrm{~mm}, 176 \mathrm{~mm}$ (2.3 in, 4.5 in, 6.9 in)
87422A	$\begin{aligned} & 100 \text { to } 240 \text { VAC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & +15 \mathrm{~V} \text { at } 3.3 \mathrm{~A},-15 \mathrm{~V} \text { at } 50 \mathrm{~mA} \\ & +12 \mathrm{~V} \text { at } 2.0 \mathrm{~A},-12 \mathrm{~V} \text { at } 200 \mathrm{~mA} \end{aligned}$	70 W max	$\begin{aligned} & 86 \mathrm{~mm}, 202 \mathrm{~mm}, 276 \mathrm{~mm} \\ & (3.4 \mathrm{in}, 8.0 \mathrm{in}, 10.9 \mathrm{in}) \end{aligned}$

Key Literature

For more information, visit our web site: www.agilent.com/find/mta

11713B/C Attenuator/Switch Driver

The Agilent 11713B/C attenuator/switch drivers provide remote or front panel drive control for programmable attenuators and electromechanical switches. Designed with both with both benchtop and ATE environments in mind, these attenuator/switch drivers provide an intuitive user interface, a variety of switching options, software programmability and remote control features for quick, easy design validation and automated testing. Front panel push-buttons and an easy-to-read LCD display simplify setup of functions such as voltage, TTL functions, IP address, etc.

The $11713 \mathrm{~B} / \mathrm{C}$ is a LXI Class C compliant instrument, so it can be easily controlled and triggered remotely using a full-featured graphical web interface. This feature is used in high-volume production environments. Software instrument drivers such as IVI-COM provide programming compatibility with popular application development environments and support PC industry standards such as Component Object Model (COM). Standard GPIB connectivity supports automated programmed scripting and ensures backward compatibility to Agilent 11713A attenuator/ switch drivers.

34980A Multifunction Switch/Measure Unit for RF \& Microwave Switching

The 34980A offers plug-in modules for RF and microwave switching and attenuation. This can be accomplished with either on-board RF \& microwave switches, or with the 34945A/EXT microwave switch/attenuator driver module. The 34945A/EXT module provides power and control signals for the most popular microwave switches and attenuators. One 34945A/EXT can drive up to 64 switch coils - equivalent to 32 SPDT switches. Additional 34945EXT boards can be added to accommodate up to 512 coils from one 34980A mainframe. Distribution boards enable simple connections to external switches and attenuators.

The $34941 \mathrm{~A} / 42 \mathrm{~A}$ plug-in modules are configured with four independent 1 x 4 RF multiplexers for switching signals up to 3 GHz . Multiple banks can be connected together to create a larger multiplexer. The 34945A/46A plug-in modules offer single-pole, dou-ble-throw switches in either 4 GHz or 20 GHz configurations. These modules internally mount two or three independent coaxial switches on the module.

E1368A, E1369A and E1370A VXI Attenuator/ Switch Drivers

Agilent's VXI family of instrumentation includes modules for microwave switching and attenuation control up to 18.0 GHz . E1368A contains three factory-installed SPDT switches such as the 8762B which features all-port termination, DC to 18.0 GHz . E1369A is identical to the E1368A except the switches are not included. This allows user-substitution of 8763 or 8764 transfer switches. E1370A allows the user to customize the internal configuration for 8766 series multiport switches or 8494/95/96/97 step attenuators.

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

11713B Attenuator/Switch Driver (must order 1 option) 11713B-STD 1 Bank of Outputs, Single Voltage 24 V Supply 11713B-LXI 1 Bank of Outputs, Single Voltage 24 V Supply, LAN (LXI-C), USB
11713C Attenuator/Switch Driver 2 Banks of Outputs, Tri \& External Voltage Supply, LAN (LXI-C), USB
34980A Multifunction Switch/Measure Unit
34941A Quad 1x4 50-ohm 3 GHz RF Multiplexer
34942A Quad 1x4 75 -ohm 1.5 GHz Multiplexer 34945A (with 34945EXT) Microwave Switch/Attenuator Driver 34946A Dual 1x2 SPDT Terminated Microwave Switch 34947A Triple 1x2 SPDT Unterminated Microwave Switch E1368A 18 GHz Microwave Switch
E1369A Microwave Switch Driver
E1370A Microwave Switch/Step Attenuator Driver

RF \& Microwave Test Accessories

Solid State Switches

- High isolation
- Low video leakage
- Fast settling time
- Broad frequency range

Solid State Switches

Agilent's solid state switches provide superior performance with high isolation and fast switching speed across a broad operating frequency range. These absorptive switches are designed for high frequency, single-pole double-throw (SPDT) and single-pole-four-throw (SP4T) operations. Applications include instrumentation, communications, radar, antenna and many other test systems that require high speed RF and microwave switching.

U9397A/C FET Solid State Switch

Agilent U9397A and U9397C FET solid state switches, SPDT provide superior performance in terms of video leakage, isolation, settling time, and insertion loss across a broad frequency (300 KHz to 8 GHz). The U9397A/C is particularly suitable for measuring sensitive components, such as mixers and amplifiers, where video leakage may cause damage or reliability issues.

85331B/32B Solid State Switch

The Agilent 85331B (SPDT) and 85332B (SP4T) are absorptive PIN diode solid state switches which provide a superior performance in terms of isolation and fast switching speed across a broad frequency range of 45 MHz to 50 GHz . These absorptive switches are designed for high frequency usage and are extremely useful for applications in instrumentation, communications, radar and many other test systems that require high speed RF and microwave switching.

85331B \& 85332B

U9397A/C Specifications

	U9397A	U9397C
Frequency Range	300 KHz to 8 GHz	300 KHz to 18 GHz
Insertion Loss	$\begin{aligned} & <3.0 \mathrm{~dB} \\ & (300 \mathrm{KHz} \text { to } 4 \mathrm{GHz}) \\ & <5.0 \mathrm{~dB} \\ & (300 \mathrm{KHz} \text { to } 8 \mathrm{GHz}) \end{aligned}$	$\begin{aligned} & <3.5 \mathrm{~dB} \\ & (4 \text { to } 8 \mathrm{GHz}) \\ & <6.5 \mathrm{~dB} \\ & \text { (8 to } 18 \mathrm{GHz} \text {) } \end{aligned}$
Isolation	100 dB	90 dB
Return Loss (ON and common port)	$>15 \mathrm{~dB}$	$>10 \mathrm{~dB}$
Return Loss (0FF port)	$>18 \mathrm{~dB}$	$>13 \mathrm{~dB}$
Settling Time	$350 \mu \mathrm{~s}$	$350 \mu \mathrm{~s}$
Switching Speed Rise/Fall ${ }^{1}$	$5 / 0.5 \mu \mathrm{~s}$ (typical)	$5 / 0.5 \mu$ s (typical)
Video Leakage	<10 mVpp	<10 mVpp
Characteristic Impedance	50Ω (nominal)	50Ω (nominal)
Connectors	SMA (f)	SMA(f)

Switching speed is based on 10% to 90% RF.

85331B/32B Specifications

Model Number	Frequency Range (GHz)	Insertion Loss (dB)	Isolation (dB)	Return Loss (OFF Port) (dB)	Return Loss (ON Port) (dB)	Return Loss (COM Port) (dB)
85331B	0.045 to 0.5	-2.0	-85	-19.0	-10.0	-10.0
SP2T	0.5 to 18	-4.5	-90	-19.0	-10.0	-10.0
	18 to 26.5	-6.0	-90	-12.5	-6.0	-5.5
	26.5 to 40	-10.0	-85	-10.0	-6.0	-4.5
	40 to 50	-15.5	-75	-6.0	-4.5	-4.0
85332B	0.045 to 0.5	-2.0	-85	-19.0	-9.0	-10.0
SP4T	0.5 to 18	-4.5	-90	-19.0	-9.0	-10.0
	18 to 26.5	-7.0	-90	-12.5	-5.0	-5.5
	26.5 to 40	-12.0	-85	-10.0	-4.5	-4.0
	40 to 50	$\begin{aligned} & -21.5 \\ & -15.5 \end{aligned}$	-75	-6.0	-4.5	-4.0

Key Literature \& Web Link U9397A
For more information, visit our web site: \quad U9397C
www.agilent.com/find/mta
Ordering Information
U9397A 8 GHz High-performance FET Solid State Switch
U9397C 18 GHz High-performance FET Solid State Switch
85331B SP2T 45 MHz to 50 GHz Solid State Switch
85332B SP4T 45 MHz to 50 GHz Solid State Switch

For 85331B \& 85332B

Option 001 Switch Control Cable - 1 meter
Option 002 Switch Control Cable - 2 meter
Option 005 Switch Control Cable - 5 meter
Option 010 Switch Control Cable - 10 meter
Option 015 Switch Control Cable - 15 meter
Option 102 Switch Control Cable (one end bare wire) - 2 meter
Option 115 Switch Control Cable (one end bare wire) - 15 meter
Option 201 Switch Control Unit

RF \& Microwave Test Accessories

Coaxial Switches

- Low SWR

N1812UL

- Low insertion loss
- High isolation - up to 134 dB @ 4 GHz
- Long life - 5 million cycles
- Excellent repeatability

N181x Series

Coaxial Switches

Featuring unparalleled reliability and the longest life available, Agilent switches are the clear choice for high volume wireless communications manufacturing test. All switches utilize magnetically latched solenoids and break-before-make RF contacts for test simplicity. In precision measurements and monitoring applications where insertion loss repeatability is crucial, these switches will operate in excess of 5 million cycles with better than 0.03 dB of insertion loss repeatability at $25^{\circ} \mathrm{C}$.

N1810UL - Unterminated Latching SPDT

The 1810UL is a single-pole, double throw switch available in the frequency range from DC to 26.5 GHz .

N1810TL - Terminated Latching SPDT

The 1810TL is a single-pole, double throw switch available in the frequency range from DC to 26.5 GHz . The unused port is terminated into 50Ω, making it ideal for applications where source matching is required.

N1811TL - Terminated Latching Bypass

The 1811TL is a terminated bypass switch available in the frequency range from DC to 26.5 GHz . The switch's internal load can terminate the device under test when in the through mode (up to 1 watt). Because of its compact design, it is ideal for drop-in, drop-out applications.

N1812UL - Unterminated Latching 5-port

The 1812 UL is a versatile, unterminated 5-port switch available in the range of frequency from DC to 26.5 GHz . In bypass switch applications, the fifth port can be terminated externally with a high power termination. It can also be utilized for signal path reversal or as a calibration port

General Operating Characteristics: N181x series

Switching Speed	Repeatability	Life	Impedance
$<15 \mathrm{~ms}$	$<0.03 \mathrm{db}$ typical	5 mil cycles	50Ω

Standard Performance Specifications: N181x series

Optional High Performance Specifications: N181x series

Key Literature

N1810/1/2 Coaxial Switches Product Overview, p/n 5968-9653E

Ordering Information

N1810UL, N1810TL, N1811TL, N1812UL

Frequency
002 DC to 2 GHz w/SMA(f) RF Connector
004 DC to 4 GHz w/SMA(f) RF Connector
020 DC to 20 GHz w/SMA(f) RF Connector
$\mathbf{0 2 6}$ DC to 26.5 GHz w/SMA(f) RF Connector
Voltage
1055 volts
11515 volts
12424 volts
DC Connector
201 D-subminiature 9 pin (f)
202 Solder lugs

Options

Performance (chose any)
301 Higher Isolation (see specs)
302 Low SWR and Insertion Loss (see specs)
Drive (chose any)
401 TTL/5V CMOS Compatible Drive
402 Position Indicators
403 Current Interrupts
Ordering example: For an unterminated 5-port switch, operating up to 20 GHz , with 15 volt coils, D-sub connector, TTL drive, and high isolation, the order should look as follows: N1812UL-020, -115, -201, -301, -401

Coaxial Switches

Agilent coaxial switches feature low SWR, low insertion loss, excellent isolation and exceptional repeatability of 0.03 dB for more than 1 million switching cycles. Agilent offers a broad line of coaxial switches, covering up to 40 GHz , for use in test and measurement applications. All switches use magnetically-latched solenoids and break-before-make RF contacts for test simplicity.

8761 Series

$8761 \mathrm{~A} / \mathrm{B}$ is a SPDT switch which operates up to 18 GHz . Each port features six connector options plus 50Ω termination for design flexibility. These switches offer exceptional repeatability of 0.03 dB over 1 million switching cycles.

8762 Series

$8762 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ switches operate up to 26.5 GHz . These switches provide 50Ω match termination at all ports. Control voltage options T15 and T24 are compatible with TTL/5 V CMOS drive circuitry. Another model, 8762 F is designed for 75Ω transmission lines, making it valuable for commercial communication applications up to 4 GHz .

8763 Series

8763A/B/C switches operate up to 26.5 GHz . They are preferred for drop-out or drop-in applications due to their compact design. These switches are used to automatically insert or remove a test component from a signal path. One port is internally terminated. Options T15 and T24 are available for TTL/5 V CMOS compatibility.

8764 Series

$8764 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ switches are available in three models up to 26.5 GHz . These switches are similar to the 8763 , but with the internal termination replaced with a fifth port. The fifth port can be utilized for signal path reversal or as a calibration port. Options T15 and T24 offer TTL/ 5 V CMOS compatibility.

8765 Series

8765A/B/C/D/F are available in four models up to 40 GHz , as well as a 75Ω model to 4 GHz . These SPDT switches offer exceptional repeatability of 0.03 dB over 5 million switching cycles. Unlike the 8762 switches, they do not have internal, switched RF loads or DC current interrupts. Coil voltage options cover the complete range from 5 Vdc to 24 Vdc . Since the coils are not interrupted, the coil voltage may be continuous or may be switched off after 15 ms .

Key Literature \& Web Link

www.agilent.com/find/mta

Ordering Information

8761A/B Coaxial Switches

Specify voltage and connectors (including built-in 50Ω terminations) by alphabetic suffix on the switch model number and the appropriate 3-digit option number. Specify all connectors.
8761A 12 to 15 V Supply Voltage
8761B 24 to 30 V Supply Voltage
Connector Options (Port 1, Port 2, Port C):

Option Code

100/200/300
101/201/301
102/202/302
103/203/303
104/204/304
105/205/305
106/206/306
107/207/307

Connector Type

Type-N Female
Type-N Male
7-mm Threaded Sleeve (APC-7®) ${ }^{1}$
$7-\mathrm{mm}$ Coupling Nut (APC-7) ${ }^{1}$
7 -mm for UT-250 Coax
3-mm Female (SMA)
$3-\mathrm{mm}$ Male (SMA)
50-ohm Termination
8762, 8763, 8764 Coaxial Switches
Specify the frequency and voltage by the alphabetic suffix and option number. The standard model has 24 V supply voltage.
8762A SPDT, DC to 4 GHz
8762B SPDT, DC to 18 GHz
8762C SPDT, DC to 26.5 GHz
8762F SPDT, DC to $4 \mathrm{GHz}, 75 \Omega$
8763A 4-Port, DC to 4 GHz
8763B 4-Port, DC to 18 GHz
8763C 4-Port, DC to 26.5 GHz
8764A 5-Port, DC to 4 GHz
8764B 5-Port, DC to 18 GHz
8764C 5-Port, DC to 26.5 GHz

8765 Coaxial Switches

A voltage option must be ordered with the switch. Specify frequency, voltage, DC connectors, and ribbon cable extension options by alphabetic suffix and option number.
8765A SPDT, DC to 4 GHz
8765B SPDT, DC to 20 GHz
8765C SPDT, DC to 26.5 GHz
8765D SPDT, DC to 40 GHz
8765 F SPDT, DC to $4 \mathrm{GHz}, 75 \Omega$
Either option will connect to a standard, sexless, 7 -mm connector. To daisy-chain two 8761 A's you must use one option 102,202 , or 302 and one option 103,203 , or 303 on the two mating connectors. If you have two of the same options, you will need to use a cable with two standard 7-mm connectors.

RF \& Microwave Test Accessories
Coaxial Switches (cont.)

8761 - 5 Series Specifications

Model	Frequency Range (GHz)	SWR 50Ω Nominal	Insertion Loss	Isolation	Switching Speed	Repeatability ${ }^{2}$	Life ${ }^{3}$	RF Connectors	Dimensions WxHxD (mm)	Shipping Weight (g)
8761A SPDT Unterminated	DC to 18	$\begin{aligned} & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.25 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.5 \mathrm{~dB} \text { to } 12.4 \mathrm{GHz} \\ & <0.8 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$>50 \mathrm{~dB}$ to 12.4 GHz $>45 \mathrm{~dB}$ to 18 GHz	35 to 50 mS	0.03 dB	1×10^{6}		$38 \times 41 \times 38$	300
8761B SPDT Unterminated	DC to 18	$\begin{aligned} & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.25 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.5 \mathrm{~dB} \text { to } 12.4 \mathrm{GHz} \\ & <0.8 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$>50 \mathrm{~dB}$ to 12.4 GHz $>45 \mathrm{~dB}$ to 18 GHz	35 to 50 mS	0.03 dB	1×10^{6}		$38 \times 41 \times 38$	300
8762A SPDT Terminated	DC to 4	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.2 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.25 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \end{aligned}$	$>100 \mathrm{~dB}$ to 4 GHz	$<30 \mathrm{mS}$	0.03 dB	1×10^{6}	SMA (f)	$53 \times 14 \times 54$	220
8762B SPDT Terminated	DC to 18	$\begin{aligned} & <1.10 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.2 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.5 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$>90 \mathrm{~dB}$ to 18 GHz	$<30 \mathrm{mS}$	0.03 dB	1×10^{6}	SMA (f)	$53 \times 14 \times 54$	220
8762C SPDT Terminated	DC to 26.5	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.25 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.5 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \\ & <1.25 \mathrm{~dB} \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$>90 \mathrm{~dB}$ to 18 GHz $>50 \mathrm{~dB}$ to 26.5 GHz	$<30 \mathrm{mS}$	0.03 dB to 18 GHz 0.05 dB to 26.5 GHz	1×10^{6}	3.5 mm (f)	$53 \times 14 \times 54$	220
8762F SPDT, 75 , Terminated	DCto 4	$\begin{aligned} & <1.15 \text { to } 1 \mathrm{GHz} \\ & <1.3 \text { to } 4 \mathrm{GHz} \end{aligned}$	$<0.4 \mathrm{~dB}$ to 4 GHz	$>100 \mathrm{~dB}$ to 4 GHz	$<30 \mathrm{mS}$	0.03 dB	1×10^{6}	$75 \Omega, \mathrm{SMB}(\mathrm{m})$	$53 \times 14 \times 54$	300
8763A Coaxial Terminated	DCto 4	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.2 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.25 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \end{aligned}$	$>100 \mathrm{~dB}$ to 4 GHz	$<30 \mathrm{mS}$	0.03 dB	1×10^{6}	SMA (f)	$53 \times 14 \times 54$	220
8763B Coaxial Terminated	DC to 18	$\begin{aligned} & <1.10 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.2 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.5 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$>90 \mathrm{~dB}$ to 18 GHz	$<30 \mathrm{mS}$	0.03 dB	1×10^{6}	SMA (f)	$53 \times 14 \times 54$	220
8763C Coaxial Terminated	DC to 26.5	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$<0.25 \mathrm{~dB}$ to 2 GHz $<0.5 \mathrm{~dB}$ to 18 GHz <1.25 to 26.5 GHz	$>90 \mathrm{~dB}$ to 18 GHz $>50 \mathrm{~dB}$ to 26.5 GHz	<30 mS	0.03 dB to 18 GHz 0.05 dB to 26.5 GHz	1×10^{6} 	3.5 mm (f)	$53 \times 14 \times 54$	220
8764A Coaxial Unterminated	DCto 4	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.2 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.25 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \end{aligned}$	$>100 \mathrm{~dB}$ to 4 GHz	<30 mS	0.03 dB	1×10^{6}	SMA (f)	$53 \times 14 \times 54$	220
8764B Coaxial Unterminated	DC to 18	$\begin{aligned} & <1.10 \text { to } 2 \mathrm{GHz} \\ & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.3 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.2 \mathrm{~dB} \text { to } 2 \mathrm{GHz} \\ & <0.5 \mathrm{~dB} \text { to } 18 \mathrm{GHz} \end{aligned}$	$>90 \mathrm{~dB}$ to 18 GHz	<30 mS	0.03 dB	1×10^{6}	SMA (f)	$53 \times 14 \times 54$	220
8764C Coaxial Unterminated	DC to 26.5	$\begin{aligned} & <1.15 \text { to } 2 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$<0.25 \mathrm{~dB}$ to 2 GHz $<0.5 \mathrm{~dB}$ to 18 GHz $<1.25 \mathrm{~dB}$ to 26.5 GHz	$>90 \mathrm{~dB}$ to 18 GHz $>50 \mathrm{~dB}$ to 26.5 GHz	<30 mS	0.03 dB to 18 GHz 0.05 dB to 26.5 GHz	1×10^{6} 	3.5 mm (f)	$53 \times 14 \times 54$	220
8765A SPDT Unterminated	DCto 4	<1.2 to 4 GHz	$\begin{aligned} & 0.2+0.025 \mathrm{f}(\mathrm{GHz}) \max \\ & <0.2 \text { to } 4 \mathrm{GHz}^{1} \end{aligned}$	$\begin{aligned} & 110-2.25 \times f(\mathrm{GHz}) \text { min } \\ & >120 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \end{aligned}$	<15mS	0.03 dB	5×10^{6}	SMA (f)	$33 \times 14 \times 45$	200
8765B SPDT Unterminated	DC to 20	$\begin{aligned} & <1.2 \text { to } 4 \mathrm{GHz} \\ & <1.35 \text { to } 12.4 \mathrm{GHz} \\ & <1.45 \text { to } 18 \mathrm{GHz} \\ & <1.7 \text { to } 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.2+0.025 \mathrm{f}(\mathrm{GHz}) \max \\ & <0.2 \text { to } 4 \mathrm{GHz}^{1} \\ & <0.5 \text { to } 20 \mathrm{GHz}^{1} \end{aligned}$	$\begin{aligned} & 110-2.25 \times f(\mathrm{GHz}) \mathrm{min} \\ & >120 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \\ & >90 \mathrm{~dB} \text { to } 20 \mathrm{GHz} \end{aligned}$	$<15 \mathrm{mS}$	0.03 dB	5×10^{6}	SMA (f)	$33 \times 14 \times 45$	200
8765C SPDT Unterminated	DC to 26.5	<1.25 to 4 GHz <1.45 to 18 GHz <1.7 to 26.5 GHz	$\begin{aligned} & 0.25+0.027 \mathrm{f}(\mathrm{GHz}) \max \\ & <0.2 \text { to } 4 \mathrm{GHz}^{1} \\ & <0.5 \text { to } 20 \mathrm{GHz}^{1} \\ & <0.7 \text { to } 26.5 \mathrm{GHz}^{1} \end{aligned}$	$\begin{aligned} & 110-2.25 \times f(\mathrm{GHz}) \text { min } \\ & >120 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \\ & >90 \mathrm{~dB} \text { to } 20 \mathrm{GHz} \\ & >60 \mathrm{~dB} \text { to } 26.5 \mathrm{GHz} \end{aligned}$	<15mS	0.03 dB	5×10^{6}	3.5 mm (f)	$33 \times 14 \times 45$	200
8765D SPDT Unterminated	DC to 40	$\begin{aligned} & <1.25 \text { to } 4 \mathrm{GHz} \\ & <1.45 \text { to } 26.5 \mathrm{GHz} \\ & <1.7 \text { to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.2+0.23 \mathrm{f}\left(\mathrm{GHz}^{2}\right) \max \\ & <0.2 \text { to } 4 \mathrm{GHz}^{1} \\ & <0.5 \text { to } 20 \mathrm{GHz}^{1} \\ & <0.7 \text { to } 26.5 \mathrm{GHz}^{1} \\ & 0.75+00.023 \mathrm{f}(\mathrm{GHz}) \max \\ & <1.0 \text { to } 40 \mathrm{GHz}^{1} \end{aligned}$	$\begin{aligned} & 110-2.25 \times f(\mathrm{GHz}) \text { min } \\ & >120 \mathrm{~dB} \text { to } 4 \mathrm{GHz} \\ & >90 \mathrm{~dB} \text { to } 20 \mathrm{GHz} \\ & >60 \mathrm{~dB} \text { to } 26.5 \mathrm{GHz} \\ & >50 \mathrm{~dB} \text { to } 40 \mathrm{GHz} \end{aligned}$	<15mS	0.03 dB	5×10^{6}	$\begin{aligned} & 2.4 \mathrm{~mm}(\mathrm{f}) \\ & 2.92 \mathrm{~mm}(\mathrm{f}) \end{aligned}$	$33 \times 14 \times 45$	200
8765F SPDT, 75Ω Unterminated	DC to 4	$\begin{aligned} & <1.15 \text { to } 1 \mathrm{GHz} \\ & <1.20 \text { to } 4 \mathrm{GHz} \end{aligned}$	$<0.18 \mathrm{~dB}$ to 1 GHz $<0.24 \mathrm{~dB}$ to 2 GHz $<0.40 \mathrm{~dB}$ to 4 GHz	$>100 \mathrm{~dB}$ to 1 GHz $>90 \mathrm{~dB}$ to 4 GHz	< 15 mS	0.03 dB	5×10^{6}	75Ω SMB (m)	$33 \times 14 \times 45$	200

[^0]${ }^{2}$ Measured at $25^{\circ} \mathrm{C}$.
${ }^{3}$ Cycles per section minimum.
For more information, visit our web site: www.agilent.com/find/mta

- Guaranteed repeatability of 0.03 dB up to 2 million cycles
- Operating life of 5 million cycles typical
- Unmatched isolation, 90 dB minimum at 12 GHz
- Economically priced

Transfer - Economical High Performance

L Series - L7222C

The L7222C 4-port coaxial transfer switch provides flexibility and simplification of design in signal routing and conditioning applications. Operating from DC to 26.5 GHz , these switches provide exceptional 0.03 dB insertion loss repeatability warranted for 2 million cycles. The L7222C's high isolation between ports, typically $>90 \mathrm{~dB}$, reduces the influence of signals from other channels and system measurement uncertainties, making them ideal for use in large, multitiered switching systems. The L7222C can be used in a variety of applications, such as a drop-out switch, switching two inputs and two outputs, or signal reversal switching.

Multiport-Economical High Performance, Terminated

L Series - L7104A/B/C and L7106A/B/C

L7104A/B/C and L7106A/B/C multiport switches are available in 3 models up to 26.5 GHz . These switches offer a warranted repeatability of 0.03 dB for 2 million cycles. The L7104A/B/C single-pole-4throw (SP4T) and L7106A/B/C, SP6T operate from DC to 26.5 GHz with excellent isolation, VSWR, 1.2 maximum, and with an input power of 1 W avg./ 50 W peak (15 s max). These switches provide the life and reliability required for automated test and measurement, signal monitoring and routing application at an economical price.

Multiport-Economical High Performance, Unterminated

L Series - L7204A/B/C and L7206A/B/C

L7204A/B/C and L7206A/B/C are unterminated multiport switches which operate at frequency range up to 26.5 GHz . These switches offer a warranted repeatability of 0.03 dB for 2 million cycles. The L7204A/B/C, SP4T and L7206A/B/C, SP6T operate from DC to 26.5 GHz with excellent isolation, VSWR, 1.2 maximum, and with an input power of 1 W avg./ 100 W peak (15 s max). These switches provide the life and reliability for automated test and measurement, signal monitoring and routing application at an economical price.

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

L7104A DC to 4 GHz , SP4T, terminated
L7104B DC to 20 GHz , SP4T, terminated
L7104C DC to 26.5 GHz , SP4T, terminated
L7204A DC to 4 GHz , SP4T, unterminated
L7204B DC to $20 \mathrm{GHz}, \mathrm{SP} 4 \mathrm{~T}$, unterminated
L7204C DC to 26.5 GHz, SP4T, unterminated
L7106A DC to 4 GHz , SP6T, terminated
L7106B DC to 20 GHz , SP6T, terminated
L7106C DC to 26.5 GHz, SP6T, terminated
L7206A DC to 4 GHz , SP6T, unterminated
L7206B DC to 20 GHz , SP6T, unterminated
L7206C DC to 26.5 GHz, SP6T, unterminated
L7XXX-100 Solder Terminals to replace Ribbon Cable L7XXX-UK6 Commercial Calibration Test Data with Certificate L7XXX-T24 TTL/5 V CMOS Compatible Option
L7222C DC to 26.5 GHz Transfer Switch
11713B/C Attenuator Switch Driver
Drives up to 10 sections of switches or attenuators

5061-0969 Accessory Cable

Viking connector to bare tinned wires (60 inches long). Use to connect 11713B to L7104/204/106/206 with Option 100. One required with L7104/L7204 Option 100; two required with L7106/L7206 Option 100

Model	Frequency Range (GHz)	SWR	Insertion Loss (db)	Isolation	Switching Time (max)	Repeatability (max)	Life	Connector	Dimension W xHxD (mm)
L7104/L7204A L7106/L7206A	DC to 4 GHz	1.2 maximum	$\begin{aligned} & 0.3+0.015 x \\ & \text { frequency } \\ & \text { (GHz) } \end{aligned}$	90 dB minimum	15 ms	0.03 dB	2 million	SMA (f)	$57.15 \times 71.53 \times 57.15$
$\begin{aligned} & \text { L7104/L7204B } \\ & \text { L7106/L7206B } \end{aligned}$	DC to 20 GHz	1.2 maximum, DC to 4 GHz 1.35 maximum, 4 to 12.4 GHz 1.45 maximum, 12.4 to 18 GHz 1.7 maximum, 18 to 20 GHz	$0.3+0.015 x$ frequency (GHz)	90 dB minimum, DC to 12 GHz 70 dB minimum, 12 GHz to 15 GHz 65 dB minimum, 15 to 20 GHz	15 ms	0.03 dB	2 million	SMA (f)	$57.15 \times 71.53 \times 57.15$
L7104/L7204C L7106/L7206C	DC to 26.5 Hz	1.2 maximum, DC to 4 GHz 1.35 maximum, 4 to 12.4 GHz 1.45 maximum, 12.4 to 18 GHz 1.7 maximum, 18 to 26.5 GHz	$0.3+0.015 x$ frequency (GHz)	90 dB minimum, DC to 12 GHz 70 dB minimum, 12 GHz to 15 GHz 65 dB minimum, 15 to 20 GHz 60 dB minimum, 20 to 26.5 GHz	15 ms	0.03 dB	2 million	SMA (f)	$57.15 \times 71.53 \times 57.15$
L7222C	DC to 26.5	$1.65 \text { maximum }$ $\text { at } 26.5 \mathrm{GHz}$	$\begin{aligned} & 0.2+0.025 \mathrm{x} \\ & \text { frequency } \\ & (\mathrm{GHz}) \end{aligned}$	$\begin{aligned} & 110 \mathrm{~dB}-2.0 \mathrm{x} \\ & \text { frequency (GHz) } \end{aligned}$	15 ms	0.03 dB	2 million	SMA (f)	$31.75 \times 56.80 \times 23.11$

RF \& Microwave Test Accessories

Multiport Coaxial Switches (cont.)

- Guaranteed repeatability of 0.03 dB up to 5 million cycles

87206

- Low SWR
- Low insertion loss

87222 87406B 87606B

- High isolation - >90 dB at 12 GHz

87222C/D/E

87406B

87204B

8766

Transfer Switches - High Performance

The 87222C/E 4-port, coaxial transfer switches offer versatility in a number of applications from drop-out to signal reversal. They provide exceptional repeatability $<0.03 \mathrm{~dB}$, a low insertion loss and high isolation. The 87222 C operates from DC $-26.5 \mathrm{GHz}, 87222 \mathrm{D}$ to 40 GHz , and are warranted for 5 million cycles. The 87222 E operates from DC - 50 GHZ. The option $16187222 \mathrm{C} / \mathrm{D} / \mathrm{E}$ provides a 10-pin connector while Option 100 includes solder terminals. Option 201 provides a mounting bracket.

Matrix Switches - High Performance, Terminated

87406/606 Series

The 87406B and 87606B 6-port, coaxial matrix switches will provide a valuable tool for $3 \times 3,2 \times 4$, and 1×5 configurations. These high performance matrix switches offer excellent repeatability and life greater than 5 million cycles. The 87406B, 87606B operate from DC to 20 GHz with excellent isolation, VSWR <2.0:1, and with an input power of 1 W avg./ 50 W peak ($10 \mu \mathrm{~s}$ max).

Multiport - High Performance, Terminated

87104/106 and 87204/206 Series

$87104 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ and $87106 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ multiport switches are available in 3 models up to 26.5 GHz . These switches offer exceptional repeatability of 0.03 dB over 5 million switching cycles. 87104 is a Single-Pole-4-throw (SP4T) and 87106 is a SP6T function. Both switches have internal solid-state logic that automatically programs the non-used ports to a matched load when any one port is programmed to "on." This relieves the user from having to provide external logic drive pulses.

Multiport - Low Profile, Unterminated

8766/67/68/69K Series

8766/67/68/69K series switches are modified versions of the $8494 / 95 / 96 / 97$ series step attenuators (DC -26.5 GHz) for applications requiring a single-pole, 3 -throw, 4 -throw, 5 -throw or 6 -throw coaxial switch. The switch ports are unterminated. These switches offer exceptional repeatability of 0.03 dB over 5 million switching cycles. The switches are available with several optional cables and connectors to make them compatible with standard 14-pin DIP sockets. Isolation and insertion loss vary with frequency, and depend upon the port selected.

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

87104A' SP4T, DC to 4 GHz
87104B' SP4T, DC to 20 GHz
87104C' SP4T, DC to 26.5 GHz
87106A' SP6T, DC to 4 GHz
87106B' SP6T, DC to 20 GHz
87106C' SP6T, DC to 26.5 GHz
87204A SP4T, DC to 4 GHz
87204B SP4T, DC to 20 GHz
87204C SP4T, DC to 26.5 GHz
87206A SP6T, DC to 4 GHz
87206B SP6T, DC to 20 GHz
87206C SP6T, DC to 26.5 GHz
87222C Transfer, DC to 26.5 GHz
87222D Transfer, DC to 40 GHz
87222E Transfer, DC to 50 GHz
87406B Matrix, DC to 20 GHz
87406B-100 Solder Terminals
87406B-161 16-pin DIP with Ribbon Cable
87406B-T24 ${ }^{2}$ TTL/5 V CMOS Compatible Logic
87406B-024 24 Vdc without TTL Logic
87406B-UK6 Commercial Calibration Test Data with Certificate
87606B Matrix, DC to 20 GHz
87606B-100 Solder Terminals
87606B-161 16-pin DIP with Ribbon Cable
87606B-024 24 Vdc without TTL Logic
87606B-UK6 Commercial Calibration Test Data with Certificate
8766K, 8767K, 8768K, 8769K Coaxial Switches
Specify RF connectors (and frequency), supply voltages,
DC connectors by option number. Standard unit is 24 Vdc ,
$3.5-\mathrm{mm}$ (f) RF connectors (DC to 26.5 GHz), and Viking-type
DC connector
8766K SP3T Multi-Port Switch
8767K SP4T Multi-Port Switch
8768K SP5T Multi-Port Switch
8769K SP6T Multi-Port Switch
876xK-002 SMA (f) Connectors
876xK-004 $3.5 \mathrm{~mm}(f)$
876xK-008 8 -inch Ribbon Cable w/DIP Connector
$876 \times \mathrm{K}$ - 0115 Vdc Supply Voltages
876xK-015 15 Vdc Supply Voltages
876xK-016 16-inch Ribbon Cable w/DIP Connector
876xK-024 24 V Solenoids
876xK-060 5 foot DC Control Cable, 12 pin "Viking"
876xK-UK6 Commercial Calibration Test Data with Certificate
${ }^{1}$ Provides sensing capability with 87130 A .
${ }^{2}$ Not available with 87204,87206 , or 87606 switches.

87104/6, 87204/6, 87222C/E, 87406B/606B, 8766/7/8/9 Series Specifications

Model	Frequency Range (GHz)	SWR (50Ω Nominal)	Insertion Loss (db)	Isolation (db)	Switching Time (max)	Repeatability'	Life (min.)	RF Connectors	Dimensions WxHxD (mm)	Shipping Weight (g)
87104A/204A SP4T	DC to 4	<1.2 to 4 GHz	$0.3+0.015 \times f(\mathrm{GHz})$	>100 to 4 GHz	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$57 \times 74 \times 57$	229
$\begin{aligned} & \text { 87104B/204B } \\ & \text { SP4T } \end{aligned}$	DC to 20	$\begin{aligned} & <1.2 \text { to } 4 \mathrm{GHz} \\ & <1.35 \text { to } 12.4 \mathrm{GHz} \\ & <1.45 \text { to } 18 \mathrm{GHz} \\ & <1.7 \text { to } 20 \mathrm{GHz} \end{aligned}$	$0.3+0.015 \times f(\mathrm{GHz})$	$\begin{aligned} & >100 \text { to } 12 \mathrm{GHz} \\ & >80 \text { to } 15 \mathrm{GHz} \\ & >70 \text { to } 20 \mathrm{GHz} \end{aligned}$	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$57 \times 74 \times 57$	229
$\begin{aligned} & \text { 87104C/204C } \\ & \text { SP4T } \end{aligned}$	DC to 26.5	<1.7 to 20 to 26.5 GHz	$0.3+0.015 \times f(\mathrm{GHz})$	$\begin{aligned} & >65 \\ & 20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$57 \times 74 \times 57$	229
$\begin{aligned} & \hline 87106 A / 206 A \\ & \text { SP6T } \end{aligned}$	DC to 4	<1.2 to 4 GHz	$0.3+0.015 \times f(\mathrm{GHz})$	>100 to 4 GHz	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$57 \times 74 \times 57$	229
$\begin{aligned} & \text { 87106B/206B } \\ & \text { SP6T } \end{aligned}$	DC to 20	$\begin{aligned} & <1.2 \text { to } 4 \mathrm{GHz} \\ & <1.35 \text { to } 12.4 \mathrm{GHz} \\ & <1.45 \text { to } 18 \mathrm{GHz} \\ & <1.7 \text { to } 20 \mathrm{GHz} \end{aligned}$	$0.3+0.015 \times f(\mathrm{GHz})$	$\begin{aligned} & >100 \text { to } 12 \mathrm{GHz} \\ & >80 \text { to } 15 \mathrm{GHz} \\ & >70 \text { to } 20 \mathrm{GHz} \end{aligned}$	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$57 \times 74 \times 57$	229
$\begin{aligned} & \text { 87106C/206C } \\ & \text { SP6T } \end{aligned}$	DC to 26.5	<1.7 to 20 to 26.5 GHz	$0.3+0.015 \times f(\mathrm{GHz})$	$\begin{aligned} & >65 \\ & 20 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$57 \times 74 \times 57$	229
87222C	DC to 26.5	$\begin{aligned} & <1.1 \text { to } 2 \mathrm{GHz} \\ & <1.15 \text { to } 4 \mathrm{GHz} \\ & <1.25 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 20 \mathrm{GHz} \\ & <1.65 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$0.2+0.025 \times f(\mathrm{GHz})$	$\begin{aligned} & 120-2.0 \times f(\mathrm{GHz}) \\ & \text { at } \mathrm{DC} \text { to } 26.5 \mathrm{GHz} \end{aligned}$	15 ms	0.03 dB	$5,000,000$ cycles	SMA (f)	$32 \times 69 \times 32$	100
87222D	DC to 40	$\begin{aligned} & <1.3 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 25 \mathrm{GHz} \\ & <1.7 \text { to } 40 \mathrm{GHz} \end{aligned}$	$0.2+0.025 \times f(\mathrm{GHz})$	$120-2.0 \times f(\mathrm{GHz})$ at DC to 26.5 GHz >60 at 26.5 to 40 GHz	15 ms	0.03 dB	$5,000,000$ cycles	2.92 mm (f)	$32 \times 69 \times 32$	100
87222E	DC to 50	$\begin{aligned} & <1.3 \text { to } 12.4 \mathrm{GHz} \\ & <1.4 \text { to } 20 \mathrm{GHz} \\ & <1.5 \text { to } 30 \mathrm{GHz} \\ & <1.6 \text { to } 40 \mathrm{GHz} \\ & <1.7 \text { to } 50 \mathrm{GHz} \end{aligned}$	$0.15+0.020 \times f(\mathrm{GHz})$	$120-2.0 \times f(\mathrm{GHz})$ at DC to 26.5 GHz >60 at 26.5 to 50 GHz	15 ms	0.03 dB DC to 26.5 GHz 0.05 dB 26.5 to 50 GHz	$5,000,000$ cycles	2.4 mm (f)	$32 \times 69 \times 32$	100
87406B/606B	DC to 20	$\begin{aligned} & <1.21 \text { to } 4 \\ & <1.35 \text { to } 10 \\ & <1.5 \text { to } 15 \\ & <1.7 \text { to } 18 \\ & <1.9 \text { to } 20 \end{aligned}$	$0.34+0.033 \times f(\mathrm{GHz})$	$\begin{aligned} & >100 \mathrm{~dB} \text { to } 12 \mathrm{GHz} \\ & >80 \mathrm{~dB} \text { to } 15 \mathrm{GHz} \\ & >70 \mathrm{~dB} \text { to } 20 \mathrm{GHz} \end{aligned}$	15 ms	0.03 dB	5,000,000 cycles	SMA (f)	$57 \times 74 \times 57$	229
$\begin{aligned} & \text { 8766K } \\ & \text { SP3T } \end{aligned}$	DC to 26.5 or DC to 18 for Option 002	$\begin{aligned} & <1.3 \text { to } 8 \mathrm{GHz} \\ & <1.5 \text { to } 12.4 \mathrm{GHz} \\ & <1.6 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Port 1: $0.2 \mathrm{~dB}+0.05 \mathrm{~dB} / \mathrm{GHz}$ Port 2: $0.2 \mathrm{~dB}+0.06 \mathrm{~dB} / \mathrm{GHz}$	Consult Technical Data Sheet	20 ms	0.03 dB	5,000,000 cycles	3.5 mm (f)	$45 \times 23 \times 82$	178
$\begin{aligned} & \text { 8767K } \\ & \text { SP4T } \end{aligned}$	DC to 26.5 or DC to 18 for Option 002	$\begin{aligned} & <1.3 \text { to } 8 \mathrm{GHz} \\ & <1.5 \text { to } 12.4 \mathrm{GHz} \\ & <1.6 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	Port 3: $0.2 \mathrm{~dB}+0.08 \mathrm{~dB} / \mathrm{GHz}$ Port 4:		20 ms	0.03 dB	$5,000,000$ cycles	3.5 mm (f)	$45 \times 23 \times 105$	235
8768K SP5T	DC to 26.5 or DC to 18 for Option 002	$\begin{aligned} & <1.3 \text { to } 8 \mathrm{GHz} \\ & <1.5 \text { to } 12.4 \mathrm{GHz} \\ & <1.6 \text { to } 18 \mathrm{GHz} \\ & <1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$0.25 \mathrm{~dB}+0.095 \mathrm{~dB} / \mathrm{GHz}$ Port5: $0.25 \mathrm{~dB}+0.108 \mathrm{~dB} / \mathrm{GHz}$ Port 6:		20 ms	0.03 dB	$5,000,000$ cycles	3.5 mm (f)	$45 \times 23 \times 133$	292
$\begin{aligned} & \text { 8769K } \\ & \text { SP6T } \end{aligned}$	DC to 26.5 or DC to 18 for Option 002	$\begin{aligned} & <1.3 \text { to } 8 \mathrm{GHz} \\ & <1.55 \text { to } 12.4 \mathrm{GHz} \\ & <1.8 \text { to } 18 \mathrm{GHz} \\ & <2.05 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$0.25 \mathrm{~dB}+0.12 \mathrm{~dB} / \mathrm{GHz}$		20 ms	0.03 dB	$5,000,000$ cycles	3.5 mm (f)	$45 \times 23 \times 160$	349

For more information, visit our web site: www.agilent.com/find/mta

RF \& Microwave Test Accessories

High-Performance Programmable Step Attenuators

High-Performance Programmable Step Attenuators - DC to $50 \mathbf{G H z}$

$84904 \mathrm{~K} / \mathrm{L} / \mathrm{M}$ ($0-11,1 \mathrm{~dB}$ steps)
84905M (0 - 60, 10 dB steps)
84906K/L (0 - 90, 10 dB steps)
84907K/L (0 - 70, 10 dB steps)
84908M ($0-65,5 \mathrm{~dB}$ steps)
The 84904/905/906/907/908 family of programmable step attenuators offers unmatched attenuation performance to 50 GHz . The K model brings superior accuracy and reliability to 26.5 GHz , while the L model offers unparalleled performance to 40 GHz and the M to 50 GHz .

Agilent step attenuators consist of 3 or 4 cascaded sections of specific attenuation values, e.g., $1,2,4,5,10,20$ and 40 dB . These families offer the selection, performance, accuracy and reliability expected from Agilent attenuators: attenuation ranges of 11, 70, or $90 \mathrm{~dB}, 1 \mathrm{~dB}$ and 10 dB step sizes, 5 million cycles per section, better than 0.03 dB repeatability, connector size options and the choice of male or female connectors.

Programmable step attenuators feature electromechanical designs which achieve 20 milliseconds switching time, including settling time. The permanent magnet latching allows automatic interruption of the DC drive voltage to cut power consumption and simplify circuit design. They are equipped with 10-pin DIP sockets (m) with interconnect cables available.

84904/6/7K/L Specifications

Model	Frequency Range (GHz)	Attenuation Range	Maximum SWR Std (Option 006)	Insertion Loss 0 dB Setting	Repeatability ${ }^{1}$	Life ${ }^{2}$	Shipping Weight
$\begin{aligned} & \text { 84904K } \\ & \text { 84904L } \end{aligned}$	DC to 26.5 DC to 40	0 to 11 dB 1 dB steps	$\begin{aligned} & 1.3 \text { (1.5) to } 12.4 \mathrm{GHz} \\ & 1.7 \text { (1.9) to } 34 \mathrm{GHz} \\ & 1.8(2.0) \text { to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~dB}+ \\ & 0.04 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	0.03 dB	5×10^{6}	$\begin{aligned} & 291 \mathrm{~g} \\ & (10.3 \mathrm{oz}) \end{aligned}$
84906 K 84906 L	DC to 26.5 DC to 40	$\begin{aligned} & 0 \text { to } 90 \mathrm{~dB} \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 1.3 \text { (1.5) to } 12.4 \mathrm{GHz} \\ & 1.7 \text { (1.9) to } 34 \mathrm{GHz} \\ & 1.8 \text { (2.0) to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~dB}+ \\ & 0.04 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	0.03 dB	5×10^{6}	$\begin{aligned} & 291 \mathrm{~g} \\ & (10.3 \mathrm{oz}) \end{aligned}$
84907 K 84907 L	DC to 26.5 DC to 40	$\begin{aligned} & 0 \text { to } 70 \mathrm{~dB} \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 1.25(1.4) \text { to } 12.4 \mathrm{GHz} \\ & 1.5(1.7) \text { to } 34 \mathrm{Gz} \\ & 1.7(1.9) \text { to } 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.03 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	0.03 dB	5×10^{6}	$\begin{aligned} & 229 \mathrm{~g} \\ & (8.1 \mathrm{oz}) \end{aligned}$

Sensitivity Power: $\mathrm{dB} /$ watt (temperature $\mathrm{dB} /{ }^{\circ} \mathrm{C}$): 0.001 (0.0001)
Power Rating: 1 W ave, 50 W peak, $10 \mu \mathrm{~s}$ max. pulse width
Supply Voltage/Speed/Power: 20 to $30 \mathrm{~V} /<20 \mathrm{~ms} / 2.7 \mathrm{~W}$
${ }^{1}$ Measured at $25^{\circ} \mathrm{C}$.
${ }^{2}$ Cycles per section minimum

Attenuation Accuracy DC to 26.5 GHz	26.5 to 40 GHz
1 dB : 0.4 dB	1 dB : 0.6 dB
$2 \mathrm{~dB}: 0.5 \mathrm{~dB}$	$2 \mathrm{~dB}: 0.6 \mathrm{~dB}$
$3 \mathrm{~dB}: 0.7 \mathrm{~dB}$	$3 \mathrm{~dB}: 0.8 \mathrm{~dB}$
$4 \mathrm{~dB}: 0.7 \mathrm{~dB}$	4 dB : 0.8 dB
$5 \mathrm{~dB}: 0.7 \mathrm{~dB}$	5 dB : 0.8 dB
$6 \mathrm{~dB}: 0.7 \mathrm{~dB}$	$6 \mathrm{~dB}: 0.9 \mathrm{~dB}$
$7 \mathrm{~dB}: 0.8 \mathrm{~dB}$	7 dB : 1.1 dB
$8 \mathrm{~dB}: 0.8 \mathrm{~dB}$	8 dB : 1.1 dB
$9 \mathrm{~dB}: 0.85 \mathrm{~dB}$	9 dB : 1.2 dB
10 dB : 0.9 dB	$10 \mathrm{~dB}: 1.3 \mathrm{~dB}$
$11 \mathrm{~dB}: 1.10 \mathrm{~dB}$	$11 \mathrm{~dB}: 1.5 \mathrm{~dB}$
10 dB : 0.5 dB	10 dB : 0.5 dB
20 dB : 0.6 dB	$20 \mathrm{~dB}: 0.6 \mathrm{~dB}$
$30 \mathrm{~dB}: 0.7 \mathrm{~dB}$	30 dB : 0.7 dB
40 dB : 1.0 dB	$40 \mathrm{~dB}: 1.0 \mathrm{~dB}$
50 dB : 1.2 dB	$50 \mathrm{~dB}: 1.2 \mathrm{~dB}$
60 dB : 1.6 dB	$60 \mathrm{~dB}: 1.6 \mathrm{~dB}$
$70 \mathrm{~dB}: 1.9 \mathrm{~dB}$	$70 \mathrm{~dB}: 1.9 \mathrm{~dB}$
80 dB : 2.7 dB	$80 \mathrm{~dB}: 2.7 \mathrm{~dB}$
90 dB : 2.9 dB	$90 \mathrm{~dB}: 2.9 \mathrm{~dB}$

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta
Ordering Information

[^1]Agilent 84904/5/8 M Attenuation Data Uncertainties

Attenuation (dB)	DC to 2 GHz	2 to 20 GHz	20 to 40 GHz	40 to 50 GHz
0	± 0.0305	± 0.0546	± 0.1256	± 0.1597
1-11	± 0.0297	± 0.0515	± 0.1238	± 0.1699
15	± 0.0342	± 0.0516	± 0.1263	± 0.1968
20	± 0.0334	± 0.0521	± 0.1240	± 0.1849
25	± 0.0358	± 0.0522	± 0.1251	± 0.1997
30	± 0.0432	± 0.0535	± 0.1283	± 0.2219
35	± 0.0729	± 0.1050	± 0.2521	± 0.3918
40	± 0.0729	± 0.1050	± 0.2521	± 0.3918
45	± 0.0774	± 0.1051	± 0.2546	± 0.4187
50	± 0.0766	± 0.1056	± 0.2523	± 0.4068
55	± 0.0790	± 0.1057	± 0.2534	± 0.4216
60	± 0.0864	± 0.1070	± 0.2566	± 0.4438
65	± 0.1161	± 0.1585	± 0.3804	± 0.6137

Attenuation Setting

Attenuation Accuracy ($\pm-\mathrm{dB}$; referenced from 0 dB setting):

Model Number 84904M

Attenuator Setting (dB):	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	
Frequency Range												
DC to 18 GHz	0.35	0.45	0.55	0.55	0.55	0.55	0.60	0.60	0.65	0.70	0.80	
18 to 26.5 GHz	0.40	0.50	0.70	0.70	0.70	0.70	0.80	0.80	0.85	0.90	1.10	
26.5 GHz to 40 GHz	0.60	0.60	0.80	0.80	0.80	0.90	1.10	1.10	1.20	1.30	1.50	
40 to 50 GHz	0.60	0.70	0.80	0.80	0.80	0.90	1.10	1.10	1.20	1.30	1.50	
Model Number 84905M												
Attenuator Setting (dB):	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$						
DC to 40 GHz	0.5	0.6	0.7	1.0	1.2	1.6						
40 to 50 GHz	0.7	0.8	1.0	1.3	1.5	1.8						
Model Number 84908M												
Attenuator Setting (dB):	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
DC to 40 GHz	0.5	0.5	0.6	0.6	0.7	0.7	1.0	1.0	1.2	1.2	1.6	1.6
40 to 50 GHz	$\mathbf{0 . 7}$	1.8										

Note: Step-to-step accuracy is the maximum variation from the nominal step size when changing attenuation values. It is a second specification on accuracy, and is used in combination with the absolute accuracy specifications to limit maximum allowable variation from nominal. Typical step-to-step accuracy for the 84905 M and 84908 M is $\pm 1.0 \mathrm{~dB}$ to 50 GHz ; for the 84904 M is ± 0.5 to 50 GHz .

Specifications

Maximum Insertion Loss	84904M	84905M	84908M
DC to 40 GHz (in dB 0 dB position, $\mathrm{f}=$ frequency in GHz)	$(0.8+0.04 * \mathrm{f})$	$\left(0.6+0.03^{*} \mathrm{f}\right)$	$(0.8+0.04 * \mathrm{f})$
40 to 50 GHz	3.0	2.6	3.0
Note: At $75^{\circ} \mathrm{C}$, increase insertion loss by $0.006^{*} \mathrm{f}$ (where $\mathrm{f}=$ frequency in GHz).			
SWR			
DC to 12.4 GHz	1.3	1.25	1.3
12.4 to 34 GHz	1.7	1.5	1.7
34 to 40 GHz	1.8	1.7	1.8
40 to 50 GHz	3.0	2.6	3.0

Attenuation Temperature Coefficient: Less than $0.0001 \mathrm{~dB} / \mathrm{dB} /{ }^{\circ} \mathrm{C}$
Power Sensitivity: $0.001 \mathrm{~dB} /$ Watt
RF Input Power (Maximum): 1 Watt average, 50 Watts peak
(10 microseconds max. pulse width)
Life (Minimum): 2 million cycles per section
Repeatability: 0.03 dB , typical
Environmental Capabilities: (Up to 2 million cycles)
Temperature, Operating: $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Temperature, Non-operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Altitude, Operating: 4,570 meters (15,000 feet)
Altitude, Non-operating: 137,000 meters (50,000 feet)
Humidity: Cycling 10 days, $65^{\circ} \mathrm{C}$ at 95% RH
Shock, Operating: $10 \mathrm{Gs}, 6 \mathrm{~ms}$, on six sides, three blows
Shock, Non-operating: $500 \mathrm{Gs}, 0.5 \mathrm{~ms}$, in six directions
Vibration, Operating: $5 \mathrm{Gs}, 34$ to $500 \mathrm{~Hz} ; 2 \mathrm{Gs}, 500$ to 2000 Hz
EMC: Radiated interference is within the requirements of MIL-STD-461 method RE02, VDE 0871 and CISPR Publication II

Mechanical Information

Net Weight
84904M: 291 grams (10.3 oz)
84905M: 229 grams (8.1 oz)
84908M: 291 grams (10.3 oz)
Mounting Position (any)
RF Connectors
2.4 mm female connectors (Option 101)
2.4 mm female and 2.4 mm male (Option 100)

Switching Speed

Maximum 20 milliseconds including settling time

Solenoids	Coil Voltage	Switching Current	Nominal Coil Impedance
Option 024	$24 \mathrm{~V}(20$ to 30 V$)$	125 mA (at 24 V)	185 Ohms
Option 015	15 V (13 to 22 V)	188 mA (at 15 V)	80 Ohms
Option 011	$5 \mathrm{~V}(4.5$ to 7 V$)$	325 mA (at 5 V)	17 Ohms

Switching current is current per section; approximately 10 ms duration before internal contacts open the coil circuit

8495K

Programmable and Manual Step Attenuators DC - 26.5 GHz

8494A/B/G/H (0 to $11 \mathrm{~dB}, 1 \mathrm{~dB}$ steps)
8495A/B/D/G/H/K (0 to $70 \mathrm{~dB}, 10 \mathrm{~dB}$ steps)
8496A/B/G/H (0 to $110 \mathrm{~dB}, 10 \mathrm{~dB}$ steps)
8497K (0 to $90 \mathrm{~dB}, 10 \mathrm{~dB}$ steps)
The 8494/95/96/97 family of step attenuators offer fast, precise signal level control in three frequency ranges, DC to $4 \mathrm{GHz}, \mathrm{DC}$ to 18 GHz and DC to 26.5 GHz . They feature exceptional repeatability and reliability in a wide range of frequency, attenuation and connector options.

Attenuation repeatability is specified to be less than 0.03 dB $(0.05 \mathrm{~dB}, 18$ to 26.5 GHz) for 5 million cycles per section. This assures low measurement uncertainty and high user confidence when designed into automatic test systems. Electromechanical step attenuators offer low SWR, low insertion loss and high accuracy required by high-performance test and measurement equipment.

Precision plated leaf-spring contacts remove attenuator sections (miniature tantalum nitride thin-film T-pads on sapphire and alumina substrates) from the signal path. Unique process controls and material selection ensure unmatched life and contact repeatability

11716A

Programmable Models

Miniature drive solenoids in the programmable models keep switching time, including settling, down to less than 20 milliseconds. Once switched, strong permanent magnets hold the solenoids (and attenuation value) in place. Current interrupts automatically disconnect solenoid current, simplifying driver circuit design and minimizing heat dissipation. Programming is done through a 12-pin Viking socket or optional ribbon cables with DIP plugs.

11716A/C Attenuator Interconnect Kits

Quickly and conveniently connect 1 dB step and 10 dB step attenuators together to achieve greater dynamic range with 1 dB steps. The $11716 \mathrm{~A} / \mathrm{C}$ interconnect kits contain a rigid RF cable, mounting bracket, and necessary hardware to connect any pair of 8494/ $95 / 96 / 97$ attenuators in series (see photo above). Attenuators must be ordered separately.

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

11716A Interconnect Kit (Type-N) 11716C Interconnect Kit (SMA)

8494/5/6/7 Series Specifications

Model (Switching Mode)	Frequency Range (GHz)	Attenuation Range (dB)	Maximum SWR	Insertion Loss @ 0 dB	Attenuation Accuracy	Power Rating, Minimum Life	Solenoid Voltage Speed Power	Size, Shipping Weight	Connector Options
8494A (Manual) 8494G (Programmable)	DC to 4	$\begin{aligned} & 0 \text { to } 11 \\ & 1 \mathrm{~dB} \text { steps } \end{aligned}$	1.5	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.09 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.2 \mathrm{~dB}: 1 \text { to } 2 \mathrm{~dB} \\ & \pm 0.3 \mathrm{~dB}: 3 \text { to } 6 \mathrm{~dB} \\ & \pm 0.4 \mathrm{~dB}: 7 \text { to } 10 \mathrm{~dB} \\ & \pm 0.5 \mathrm{~dB}: 11 \mathrm{~dB} \end{aligned}$	1 Wavg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	$\begin{aligned} & 20 \text { to } 30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 73 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 159 \mathrm{~mm} \mathrm{D} \\ & (2.9 \mathrm{in} \times 1.7 \mathrm{in} \times 6.2 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \\ & 79 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 168 \mathrm{~mm} \mathrm{D} \\ & (3.1 \mathrm{in} \times 1.7 \mathrm{in} \times 6.6 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See Note } 1 \end{aligned}$
8494B (Manual) 8494H (Programmable)	DC to 18	$\begin{aligned} & 0 \text { to } 11 \\ & 1 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 8 \mathrm{GHz} \\ & 1.6 \text { to } 12.4 \mathrm{GHz} \\ & 1.9 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.09 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { DC to } 12.4 \mathrm{GHz} \\ & \pm 0.3 \mathrm{~dB}: 1 \text { to } 2 \mathrm{~dB} \\ & \pm 0.4 \mathrm{~dB}: 3 \text { to } 4 \mathrm{~dB} \\ & \pm 0.5 \mathrm{~dB}: 5 \text { to } 6 \mathrm{~dB} \\ & \pm 0.6 \mathrm{~dB}: 7 \text { to } 10 \mathrm{~dB} \\ & \pm 0.7 \mathrm{~dB}: 11 \mathrm{~dB} \\ & \mathbf{1 2 . 4} \text { to } 18 \mathrm{GHz} \\ & \pm 0.7 \mathrm{~dB}: 1 \text { to } 5 \mathrm{~dB} \\ & \pm 0.8 \mathrm{~dB}: 6 \text { to } 9 \mathrm{~dB} \\ & \pm 0.9 \mathrm{~dB}: 10 \text { to } 11 \mathrm{~dB} \end{aligned}$	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	20 to 30 V $<20 \mathrm{~ms}$ 2.7 W	```73 mm W x 43 mm Hx 159 mm D (2.9 in x }1.7\mathrm{ in x 6.2 in) 0.9 kg (2 lb) 79 mm W x 43 mm Hx }168\textrm{mm D (3.1 in x }1.7\mathrm{ in x 6.6 in) 0.9 kg (2 lb)```	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See Note } 1 \end{aligned}$
8495A (Manual) 8495G (Programmable)	DC to 4	$\begin{aligned} & 0 \text { to } 70 \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	1.35	$\begin{aligned} & 0.4 \mathrm{~dB}+ \\ & 0.07 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	Refer to technical data sheet*	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	$\begin{aligned} & \text { - } \\ & 20 \text { to } 30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 73 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 130 \mathrm{~mm} \mathrm{D} \\ & (2.9 \mathrm{in} \times 1.7 \mathrm{in} \times 5.1 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \\ & 79 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 141 \mathrm{~mm} \mathrm{D} \\ & (3.1 \mathrm{in} \times 1.7 \mathrm{in} \times 5.5 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See Note } 1 \end{aligned}$
8495B (Manual) 8495H (Programmable)	DC to 18	$\begin{aligned} & 0 \text { to } 70 \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	1.35 to 8 GHz 1.5 to 12.4 GHz 1.7 to 18 GHz	$\begin{aligned} & 0.4 \mathrm{~dB}+ \\ & 0.07 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	Refer to technical data sheet*	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	$\begin{aligned} & 20 \text { to } 30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 73 \mathrm{~mm} W \times 43 \mathrm{~mm} \mathrm{H} \times 130 \mathrm{~mm} \mathrm{D} \\ & (2.9 \mathrm{in} \times 1.7 \mathrm{in} \times 5.1 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \\ & 79 \mathrm{~mm} W \times 43 \mathrm{~mm} \mathrm{H} \times 141 \mathrm{~mm} \mathrm{D} \\ & (3.1 \mathrm{in} \times 1.7 \mathrm{in} \times 5.5 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See Note } 1 \end{aligned}$
8495D (Manual) 8495K (Programmable)	DC to 26.5	$\begin{aligned} & 0 \text { to } 70 \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 1.25 \text { to } 6 \mathrm{GHz} \\ & 1.45 \text { to } 12.4 \mathrm{GHz} \\ & 1.9 \text { to } 18.0 \mathrm{GHz} \\ & 2.2 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.4 \mathrm{~dB}+ \\ & 0.09 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	Refer to technical data sheet*	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	$\begin{aligned} & \text { - } \\ & 20 \text { to } 30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 52 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 159 \mathrm{~mm} \mathrm{D} \\ & (2.1 \mathrm{in} \times 1.7 \mathrm{in} \times 6.2 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \\ & 52 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 168 \mathrm{~mm} \mathrm{D} \\ & (2.1 \mathrm{in} \times 1.7 \mathrm{in} \times 6.6 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 004 \\ & 3.5 \mathrm{~mm} \\ & \text { See Note } 1 \end{aligned}$
8496A (Manual) 8496G (Programmable)	DC to 4	0 to 110 10 dB steps	1.5	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.09 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	Refer to technical data sheet*	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	$\begin{aligned} & \text { - } \\ & 20 \text { to } 30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 73 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 159 \mathrm{~mm} \mathrm{D} \\ & (2.9 \mathrm{in} \times 1.7 \mathrm{in} \times 6.2 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \\ & 79 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 168 \mathrm{~mm} \mathrm{D} \\ & (3.1 \mathrm{in} \times 1.7 \mathrm{in} \times 6.6 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See Note } 1 \end{aligned}$
8496B (Manual) 8496H (Programmable)	DC to 18	0 to 110 10 dB steps	$\begin{aligned} & 1.5 \text { to } 8 \mathrm{GHz} \\ & 1.6 \text { to } 12.4 \mathrm{GHz} \\ & 1.9 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~dB}+ \\ & 0.09 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	Refer to technical data sheet*	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	$\begin{aligned} & \text { - } \\ & 20 \text { to } 30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 73 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 159 \mathrm{~mm} \mathrm{D} \\ & (2.9 \mathrm{in} \times 1.7 \mathrm{in} \times 6.2 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \\ & 79 \mathrm{~mm} \mathrm{~W} \times 43 \mathrm{~mm} \mathrm{H} \times 168 \mathrm{~mm} \mathrm{D} \\ & (3.1 \mathrm{in} \times 1.7 \mathrm{in} \times 6.6 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See Note } 1 \end{aligned}$
8497K (Programmable)	DC to 26.5	$\begin{aligned} & 0 \text { to } 90 \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 1.25 \text { to } 6 \mathrm{GHz} \\ & 1.45 \text { to } 12.4 \mathrm{GHz} \\ & 1.6 \text { to } 18.0 \mathrm{GHz} \\ & 1.8 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.4 \mathrm{~dB}+ \\ & 0.09 \mathrm{~dB} / \mathrm{GHz} \end{aligned}$	Refer to technical data sheet*	1 W avg. 100 W peak $10 \mu \mathrm{~s}$ max. 5 million cycles per section	5 V or 24 V	$\begin{aligned} & 52 \mathrm{~mm} \text { W } \times 43 \mathrm{~mm} \mathrm{H} \times 143 \mathrm{~mm} \mathrm{D} \\ & (2.1 \mathrm{in} \times 1.7 \mathrm{in} \times 5.6 \mathrm{in}) \\ & 0.9 \mathrm{~kg}(2 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 004 \\ & 3.5 \mathrm{~mm} \\ & \text { See Note } 1 \end{aligned}$

Note 1: 8494/5/6/7 orders must specify connector option. See ordering example.
Option $001 \mathrm{~N}(\mathrm{f})$
Option 002 SMA(f)
Option 003 APC-7
Option 0043.5 mm (8495D/K, 8497K only)
Option UK6 Commercial Calibration Test Data with Certificate

* www.agilent.com/find/mta

How to Order the 8494/5/6/7 Series Attenuators

Each order must include basic model number, suffix letter, and connector option.

Ordering example: 8494 A Option 001

4	A	001
4 (1 dB step, 11 dB max)	A (Manual, DC to 4 GHz)	001 (N female)
$5(10 \mathrm{~dB}$ step, 70 dB max)	B (Manual, DC to 18 GHz)	002 (SMA female)
6 (10 dB step, 110 dB max)	D (Manual, DC to 26.5 GHz$)^{\prime}$	003 (APC-7)
7 (10 dB step, 90 dB max)	G (Programmable, DC to 4 GHz)	$004\left(3.5 \mathrm{~mm}\right.$ female) ${ }^{1}$
	H (Programmable, DC to 18 GHz)	
	K (Programmable, DC to 26.5 GHz$)^{1}$	

8491A/B, 8493A/B/C Fixed Attenuators

Agilent coaxial fixed attenuators provide precise attenuation, flat frequency response, and low SWR over broad frequency ranges. Attenuators are available in nominal attenuations of 3 dB and 6 dB , as well as 10 dB increments from 10 dB to 60 dB . These attenuators are swept-frequency tested to ensure they meet specifications at all frequencies. Calibration points are provided on a nameplate chart attached to each unit.

8498A High Power Attenuator

The 8498A Option 030 is designed to meet the needs of high-power attenuation applications in the RF and microwave frequency range. It is a 25-watt average, 30 dB fixed attenuator with a frequency of DC to 18 GHz . The maximum peak power specification is 500 watts (DC to 5.8 GHz) and 125 watts (5.8 to 18 GHz). Available only in a 30 dB version, the unit offers a 1.3 SWR and $\pm 1 \mathrm{~dB}$ accuracy at 18 GHz . Large heat-dissipating fins keep the unit cool even under continuous maximum input power conditions.

8490D/G High-Frequency Fixed Attenuators

Agilent coaxial fixed attenuators have been the standard for accurate flat response and low SWR. The 8490D offers an exceptional performance to 50 GHz using 2.4 mm connectors and the 8490G to 67 GHz using 1.85 mm connectors. Attenuation values available are $3,6,10,20,30$ and 40 dB . Ideally suited for extending the range of sensitive power meters, or for use as calibration standards, these broadband attenuators are manufactured with the same meticulous care as their lower frequency counterparts.

8490D/G, 8491A/B/C, 8492A, 8493A/B/C, 8498A Specifications

11581A, 11582A Attenuator Sets

A set of four Agilent attenuators - 3, 6, 10, and 20 dB - are furnished in a handsome walnut accessory case. The 11581A set consists of 8491A attenuators and the 11582A of 8491B attenuators. These sets are ideal for calibration labs or where precise knowledge of attenuation and SWR is desired. Also includes commercial calibration certificate with test data.

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

8491A, 8491B, 8493A, 8493B, 8493C, 8498A

Opt UK6 - Commercial Calibration Test Data with Certificate
11581A 3, 6, 10, 20 dB 8491A Set
11582A 3, 6, 10, 20 dB 8491B Set

- Maximum input power of 3 Watts
- Maximum insertion loss of 2.75 dB
- Minimum return loss of 15 dB (SWR of 1.43)
- Integrated DC block
- Bi-directional functionality

N9355 \& N9356 Series

N9355/56 Power Limiter Series

Agilent offers a series of industry-leading limiters, specifically designed to provide input protection for RF and microwave instruments and components used in telecommunication, component test, aerospace and defense industries. This product includes five unique designs with different frequency ranges and limiting thresholds. The N9355/56 series of high performance limiters will safe-guard your investments from damage due to excess RF power, DC transients and electro-static-discharge.

N9355B and N9356B Power Limiters

The Agilent N9355B and N9356B power limiters operate at frequency ranges from 10 MHz to 18 GHz with a limiting threshold of 10 and 25 dBm respectively. Both are furnished with a pair of premium quality male and female Type-N connectors.

N9355C \& N9356C Power Limiters

The Agilent N9355C and N9356C wideband limiters operate from 10 MHz to 26.5 GHz with a limiting threshold of 10 and 25 dBm respectively. Both are furnished with a pair of premium quality male and female 3.5 mm connectors.

N9355F Power Limiter

The Agilent N9355F is an ultra-broadband limiter operating from 10 MHz to 50 GHz with a limiting threshold of 10 dBm . It is furnished with a pair of premium quality male and female 2.4 mm connectors.

N9355B
N9356B
N9355C
N9356C
N9355F

Specifications

Model Number	N9355B	N9356B	N9355C	N9356C	N9355F
Frequency Range	0.01 to 18 GHz	0.01 to 18 GHz	0.01 to 26.5 GHz	0.01 to 26.5 GHz	0.01 to 50 GHz
Frequency Response Insertion Loss	$<1.75 \mathrm{~dB}$	<1.75 dB	$<2 \mathrm{~dB}$	$<2.25 \mathrm{~dB}$	0.01 to $26.5 \mathrm{GHz}<2 \mathrm{~dB}$ 26.5 to $40 \mathrm{GHz}<2.75 \mathrm{~dB}$ 40 to $50 \mathrm{GHz}<3.5 \mathrm{~dB}$
Return Loss (VSWR)>	$15 \mathrm{~dB}^{1}$	$15 \mathrm{~dB}{ }^{1}$	$15 \mathrm{~dB}^{1}$	$15 \mathrm{~dB}{ }^{1}$	$10 \mathrm{~dB}^{1}$
Impedance	50Ω nominal				
Maximum Input Power Levels Continuous	1 W	6 W	1 W	4 W	0.63 W
Limiting Threshold	10 dBm typical	25 dBm typical	10 dBm typical	25 dBm typical	10 dBm typical
Max. Leakage Power ${ }^{2}$	24 dBm	27 dBm	24 dBm	27 dBm	24 dBm
Maximum DC Voltage $@ 25^{\circ} \mathrm{C}$ @ $85^{\circ} \mathrm{C}$	$\begin{aligned} & 30 \mathrm{~V} \\ & 16 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \mathrm{~V} \\ & 16 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \mathrm{~V} \\ & 16 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \mathrm{~V} \\ & 16 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \mathrm{~V} \\ & 16 \mathrm{~V} \\ & \hline \end{aligned}$
Turn on Time	$<100 \mathrm{ps}$	$<100 \mathrm{ps}$	<100 ps	$<100 \mathrm{ps}$	$<100 \mathrm{ps}$
Connectors	Type-N	Type-N	3.5 mm	3.5 mm	2.4 mm

${ }^{1}$ Return loss specification from 10 MHz to 30 MHz is 8.5 dB (VSWR: 2.2).
${ }^{2}$ At maximum continuous input power level.

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

N9355B 0.01 to 18 GHz Power Limiter, 10 dBm Limiting Threshold N9355C 0.01 to 26.5 GHz Power Limiter, 10 dBm Limiting Threshold
N9356B 0.01 to 18 GHz Power Limiter, 25 dBm Limiting Threshold

DC Blocks

N9398C N9398F N9398G N9399C N9399F

N9398C/F/G and N9399C/F

N9398/N9399 Series

The N9398C/F/G and N9399C/F DC blocks offer a new level of blocking with a broadband performance specified from 50 KHz right up to 67 GHz . They are designed to apply AC drive signals to a device while eliminating any DC voltage or current components, these DC blocks feature a broad frequency range, excellent return loss, very low insertion loss and excellent temperature stability.

Specifications

	N9398C	N9399C	N9398F	N9399F	N9398G
Frequency Range	50 KHz to 26.5 GHz	700 KHz to 26.5 GHz	50 KHz to 50 GHz	700 KHz to 50 GHz	700 KHz to 67 GHz
Insertion Loss	0.9 dB	1.2 dB	$\begin{aligned} & 0.9 \mathrm{~dB} \\ & (50 \mathrm{KHz} \text { to } 26.5 \mathrm{GHZ} \text {) } \\ & 1.0 \mathrm{~dB} \\ & (26.5 \mathrm{to} 50 \mathrm{GHz}) \end{aligned}$	1.2 dB	$\begin{aligned} & 0.9 \mathrm{~dB} \\ & (700 \mathrm{KHz} \text { to } 26.5 \mathrm{GHz}) \\ & 1.0 \mathrm{~dB} \\ & (26.5 \text { to } 67 \mathrm{GHz}) \end{aligned}$
Return Loss	$\begin{aligned} & 10 \mathrm{~dB} \\ & (50 \text { to } 300 \mathrm{KHz}) \\ & 17 \mathrm{~dB} \\ & (300 \mathrm{KHz} \text { to } 26.5 \mathrm{GHz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & (50 \mathrm{to} 2 \mathrm{MHz}) \\ & 17 \mathrm{~dB} \\ & (2 \mathrm{MHz} \text { to } 26.5 \mathrm{GHz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & (50 \text { to } 300 \mathrm{KHz}) \\ & 15 \mathrm{~dB} \\ & (300 \mathrm{KHz} \text { to } 50 \mathrm{GHz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & (700 \mathrm{KHz} \text { to } 2 \mathrm{MHz}) \\ & 15 \mathrm{~dB} \\ & (2 \mathrm{MHz} \text { to } 50 \mathrm{GHz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB} \\ & (700 \mathrm{KHz} \text { to } 2 \mathrm{MHz}) \\ & 15 \mathrm{~dB} \\ & (2 \mathrm{MHz} \text { to } 67 \mathrm{GHz}) \\ & \hline \end{aligned}$
Rise Time	3 ps (typical)	3 ps (typical)	2 ps (typical)	2 ps (typical)	2 ps (typical)
Group Delay	118 ps (typical)	118 ps (typical)	78 ps (typical)	78 ps (typical)	76 ps (typical)
Max DC Working Voltage	16 V	50 V	16 V	50 V	16 V
Connector Type	3.5 mm (m-f)	3.5 mm (m-f)	2.4 mm (m-f)	2.4 mm (m-f)	1.85 mm (m-f)

Key Literature \& Web Link

For more information, visit our web site: www.agilent.com/find/mta

Ordering Information

N9398C DC Block, $16 \mathrm{~V}, 50 \mathrm{KHz}$ to $26.5 \mathrm{GHz}, 3.5 \mathrm{~mm}$
N9399C DC Block, $50 \mathrm{~V}, 700 \mathrm{KHz}$ to $26.5 \mathrm{GHz}, 3.5 \mathrm{~mm}$
N9398F DC Block, $16 \mathrm{~V}, 50 \mathrm{KHz}$ to $50 \mathrm{GHz}, 2.4 \mathrm{~mm}$
N9399F DC Block, $16 \mathrm{~V}, 700 \mathrm{KHz}$ to $50 \mathrm{GHz}, 2.4 \mathrm{~mm}$
N9398C DC Block, $16 \mathrm{~V}, 700 \mathrm{KHz}$ to $67 \mathrm{GHz}, 1.85 \mathrm{~mm}$

Planar-Doped Barrier Detectors

8471D/E

The 8471D/E are economy detectors based on the Planar-Doped Barrier (PDB) diodes. The PDB diodes give them superior frequency response, square-law response, and temperature performance. The 8471 D has a BNC (m) input connector and a frequency range of 100 kHz to 2 GHz , making it ideal for use in RF and low microwave applications. The 8471E has a SMA (m) input connector and a SMC (m) output connector. Its frequency range is 10 MHz to 12 GHz . Both models come with a negative polarity output, option 301; a positive polarity output can be specified as Option 103.

8473D

The 8473D detector was the first gallium arsenide PDB diode introduced. It features broadband performance and excellent flatness vs. frequency, along with superior temperature stability. The 8473D is available with a $3.5-\mathrm{mm}(\mathrm{m}) \mathrm{RF}$ connector and a BNC (f) output connector.

High-Performance Planar-Doped Barrier Detectors

8474B/C/E

Utilizing a gallium arsenide PDB diode as the detecting element, these detectors offer superior performance when compared to earlier detector designs. They feature extremely flat frequency response over their entire band of operation (typically better than $\pm 1 \mathrm{~dB}$ to 50 GHz) and very good frequency response stability versus temperature.

The 8474 detectors are available with BNC(f) (0.01 to 18 GHz), Type N (0.01 to 18 GHz), 3.5 mm (mates with SMA, 0.01 to 33 GHz), or 2.4 mm (0.01 to 50 GHz) connectors.

Broadband Directional Detector

83036C

The 83036C is a broadband microwave power sampler that operates in much the same way as a directional coupler and detector combination. It is composed of a resistive bridge and PDB diode that yields a very broadband device with excellent frequency response, superior temperature response and square-law response characteristics.

The maximum SWR is 1.7 above 50 MHz on both the input and output ports. Directivity of 14 dB matches that of most miniature couplers currently available. The maximum insertion loss is 2.2 dB .

Low-Barrier Schottky Diode Detectors

423B, 8470B, 8472B, 8473B/C

These Low-Barrier Schottky Diode (LBSD) detectors have been widely used for many years in a variety of applications including leveling and power sensing. They offer good performance and ruggedness. Matched pairs (Option 001) offer very good detector tracking. A video load option (Option 002) extends the square-law region to at least $0.1 \mathrm{~mW}(-10 \mathrm{dBm})$.

Key Literature

For more information, visit our web site: www.agilent.com/find/mta

RF \& Microwave Test Accessories

Coaxial Detectors (cont.)

Planar-Doped Barrier Diode Detectors Specifications

Model	Freq. Range (GHz)	Freq. Response (dB)	Max. SWR	Low-level Sensitivity	Max. Input (Peak or Average)	Short-term Max. Input (<1 min.)	Optimum SquareLaw Load ${ }^{2}$	Positive/ Negative Polarity Output	Input/ Output Connector
8471D	0.0001 to 2	$\begin{aligned} & \pm 0.2 \text { to } 1 \mathrm{GHz} \\ & \pm 0.4 \text { to } 2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.23 \text { to } 1 \mathrm{GHz} \\ & 1.46 \text { to } 2 \mathrm{GHz} \end{aligned}$	$>0.5 \mathrm{mV} / \mu \mathrm{W}$	100 mW	0.7 W	Opt. 102	Opt. 103 Opt. 301	BNC (m) BNC (f)
8471E	0.01 to 12	$\begin{aligned} & \pm 0.23 \text { to } 4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 8 \mathrm{GHz} \\ & \pm 0.85 \text { to } 12 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.7 \text { to } 8 \mathrm{GHz} \\ & 2.4 \text { to } 12 \mathrm{GHz} \end{aligned}$	$>0.4 \mathrm{mV} / \mu \mathrm{W}$	200 mW	0.75 W	No	Opt. 103 Opt. 301	$\begin{aligned} & \text { SMA (m) } \\ & \text { SMC (m) } \end{aligned}$
8473D	0.01 to 33	$\begin{aligned} & \pm 0.25 \text { to } 14 \mathrm{GHz} \\ & \pm 0.40 \text { to } 26.5 \mathrm{GHz} \\ & \pm 1.25 \text { to } 33 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 14 \mathrm{GHz} \\ & 1.36 \text { to } 26.5 \mathrm{GHz} \\ & 2.96 \text { to } 33 \mathrm{GHz} \end{aligned}$	$>0.4 \mathrm{mV} / \mu \mathrm{W}$	200 mW	1 W	No	$\begin{aligned} & \hline \text { Opt. } 003 \\ & \text { Opt. } 301 \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~mm}(\mathrm{~m}) \\ & \operatorname{BNC}(\mathrm{f}) \end{aligned}$
8474B ${ }^{1}$	0.01 to 18	± 0.35 to 18 GHz	1.3 to 18 GHz	$>0.4 \mathrm{mV} / \mu \mathrm{W}$	200 mW	0.75 W	Opt. 102	Opt. 103 Opt. 301	$\begin{aligned} & \text { Type } N(m) \\ & \text { BNC (f) } \end{aligned}$
$8474{ }^{1}$	0.01 to 33	$\begin{aligned} & \pm 0.45 \text { to } 26.5 \mathrm{GHz} \\ & \pm 0.70 \text { to } 33 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.4 \text { to } 26.5 \mathrm{GHz} \\ & 2.2 \text { to } 33 \mathrm{GHz} \end{aligned}$	$>0.4 \mathrm{mV} / \mu \mathrm{W}$	200 mW	0.75 W	No	$\begin{aligned} & \text { Opt. } 103 \\ & \text { Opt. } 301 \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~mm}(\mathrm{~m}) \\ & \text { SMC (m) } \end{aligned}$
8474E	0.01 to 50	$\begin{aligned} & \pm 0.4 \text { to } 26.5 \mathrm{GHz} \\ & \pm 0.6 \text { to } 40 \mathrm{GHz} \\ & \pm 1.0 \text { to } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 26.5 \mathrm{GHz} \\ & 1.6 \text { to } 40 \mathrm{GHz} \\ & 2.8 \text { to } 50 \mathrm{GHz} \end{aligned}$	$>0.4 \mathrm{mV} / \mu \mathrm{W}$	200 mW	0.75 W	No	No	$\begin{aligned} & 2.4 \mathrm{~mm}(\mathrm{~m}) \\ & \text { SMC (m) } \end{aligned}$

${ }^{1}$ Octave band options available (see Data Sheet).
${ }^{2}$ Defined as ± 0.5 from ideal square law response.
Broadband Directional Detector Specifications

Model	Freq. Range (GHz)	Freq. Response (dB)	Max. SWR Input/Output (50Ω Nom.)	Max. Thru Line Loss (dB)	Low-level Sensitivity	Min. Directivity (dB)	Max. Input (Into 50Ω Load) $\mathbf{w /}$ 2:1 Source Match	Max. Input (Into Open) w/ 2:1 Source Match	Input/ Output Connector
83036 C	0.01 to 26.5	± 1.0	1.7	2.2	$18 \mathrm{mV} / \mu \mathrm{W}$	14	32 dBm	21 dBm	

Low-Barrier Schottky Diode Detectors Specifications

Model	Freq. Range (GHz)	Freq. Response (dB)	Max. SWR (50Ω Nom.)	Low-level Sensitivity ($\mathrm{mV} / \mu \mathrm{W}$)	Max. Input (Peak or Average)	Short-term Max. Input (<1 min.)	Matched Response Opt. $00{ }^{2}$	Optimum Square-law Load ${ }^{1}$	Positive/ Negative Polarity Output	Input/ Output Connector
423B	0.01 to 12.4	± 0.3 to 12.4 GHz	$\begin{aligned} & 1.15 \text { to } 4 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	>0.5	200 mW	1 W (typical)	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } \\ & 12.4 \mathrm{GHz} \end{aligned}$	Opt. 002	$\begin{aligned} & \text { Opt. } 003 \\ & \text { Opt. } 301 \end{aligned}$	$\begin{aligned} & N(m) \\ & \operatorname{BNC}(f) \end{aligned}$
8470B	0.01 to 18	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.5 \text { to } 15 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	1.15 to 4 GHz 1.3 to 15 GHz 1.7 to 18 GHz	>0.5	200 mW	1 W (typical)	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } \\ & 12.4 \mathrm{GHz} \\ & \pm 0.3 \text { to } \\ & 18 \mathrm{GHz} \end{aligned}$	Opt. 002	$\begin{aligned} & \text { Opt. } 003 \\ & \text { Opt. } 301 \end{aligned}$	APC-7 BNC (f) $\mathrm{N}(\mathrm{m})$ BNC (f)
8472B	0.01 to 18	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.5 \text { to } 15 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	1.15 to 4.5 GHz 1.35 to 7 GHz 1.5 to 12.4 GHz 1.7 to 18 GHz	>0.5	200 mW	1 W (typical)	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } \\ & 12.4 \mathrm{GHz} \\ & \pm 0.3 \text { to } \\ & 18 \mathrm{GHz} \end{aligned}$	Opt. 002	$\begin{aligned} & \text { Opt. } 003 \\ & \text { Opt. } 301 \end{aligned}$	SMA (m) BNC (f) SMA (m) OSSM (f)
8473B	0.01 to 18	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.5 \text { to } 18 \mathrm{GHz} \end{aligned}$	>0.5	200 mW	1 W (typical)	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } \\ & 12.4 \mathrm{GHz} \\ & \pm 0.3 \text { to } \\ & 18 \mathrm{GHz} \end{aligned}$	Opt. 002	$\begin{aligned} & \text { Opt. } 003 \\ & \text { Opt. } 301 \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~mm}(\mathrm{~m}) \\ & \operatorname{BNC}(\mathrm{f}) \end{aligned}$
8473C	0.01 to 26.5	$\begin{aligned} & \pm 0.3 \text { to } 12.4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 20 \mathrm{GHz} \\ & \pm 1.5 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	1.2 to 4 GHz 1.5 to 18 GHz 2.2 to 26.5 GHz	$\begin{aligned} & >0.5 \text { to } 18 \mathrm{GHz} \\ & >0.18 \text { to } 26.5 \mathrm{G} \end{aligned}$	$200 \mathrm{~mW}$	1 W (typical)	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { to } \\ & 12.4 \mathrm{GHz} \\ & \pm 0.3 \mathrm{to} \\ & 18 \mathrm{GHz} \\ & \pm 0.5 \mathrm{to} \\ & 26.5 \mathrm{GHz} \end{aligned}$	Opt. 002	$\begin{aligned} & \hline \text { Opt. } 003 \\ & \text { Opt. } 301 \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~mm}(\mathrm{~m}) \\ & \operatorname{BNC}(\mathrm{f}) \end{aligned}$

[^2][^3]

87300B/C/D, 87301B/C/D/E, 87310B

87300 Series Directional Couplers

This line of compact, broadband directional couplers is ideal for signal monitoring, or when combined with a coaxial detector, for signal leveling. Available in a variety of frequency ranges, they can be matched to specific applications. The Agilent 8474 series coaxial detectors are recommended if output detection is desired. The 87300B is supplied with SMA (f) connectors, the 87300C/D has $3.5-\mathrm{mm}$ (f) connectors, and the 87301D has $2.4-\mathrm{mm}$ (f) standard or optional $2.92-\mathrm{mm}$ (f) connectors.

87310B Hybrid Coupler

87310B is a 3 dB hybrid coupler, intended for applications requiring a 90 degree phase difference between output ports. In that sense, it is different from typical power dividers and power splitters, which have matched signal phase at their output ports. The 87310B features SMA (f) connectors.

87300 Series Specifications

Model	Freq. Range (GHz)	Nominal Coupling \& (dB) Variation	Directivity (dB)	Max. SWR	Insertion Loss (dB)
87300B	1 to 20	10 ± 0.5	>16	1.35	<1.5
87300 C	1 to 26.5	10 ± 1	$\begin{aligned} & >14 \text { to } 12.4 \mathrm{GHz} \\ & >12 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.35 \text { to } 12.4 \\ & 1.5 \text { to } 26.5 \end{aligned}$	$\begin{aligned} & <1.2 \text { to } 12.4 \\ & <1.7 \text { to } 26.5 \end{aligned}$
87300D	6 to 26.5	10 ± 0.5	>13	1.4	<1.3
87301B	10 to 46	10 ± 0.7	>10	1.8	<1.9
87301 C	10 to 50	10 ± 0.7	>10	1.8	<1.9
87301D	1 to 40	13 ± 1	$\begin{aligned} & >14 \text { to } 20 \\ & >10 \text { to } 40 \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 20 \\ & 1.7 \text { to } 40 \end{aligned}$	$\begin{aligned} & <1.2 \text { to } 20 \\ & <1.9 \text { to } 40 \end{aligned}$
87310B	1 to 18	3 ± 0.5	-	1.35	<2.0
87301E	2 to 50	10 ± 1	$\begin{aligned} & >13 \text { to } 26.5 \\ & >10 \text { to } 50 \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 26.5 \\ & 1.8 \text { to } 50 \end{aligned}$	<2.0

773D Directional Coupler and 772D Dual-Directional Coupler

The 772D and 773D are high-performance couplers designed for broadband swept measurements in the 2 to 18 GHz range. The 773D is ideal for leveling broadband sources when used with an 8474B detector. (See also the 83036C directional detector.) For reflectometer applications, the 772 D is the best coupler to use with power sensors and power meters. Forward and reverse power measurements on transmitters, components or other broadband systems are made simpler using the 772D. The broadband design allows the use of a single test setup and calibration for tests spanning the entire 2 to 18 GHz frequency range.

775D to 779D Dual-Directional Couplers

The economical 775D-778D couplers cover octave frequency spreads of more than 2:1, each centered on one of the important VHF/UHF bands. With their high directivity and mean coupling accuracy of $\pm 0.5 \mathrm{~dB}$, these are ideal couplers in reflectometer applications. The close tracking of the auxiliary arms makes these couplers particularly useful for reflectometers. Power ratings are 50 W average, 500 W peak.

772-779D, 11691D, 11692D Specifications

Model	Freq. Range (GHz)	Nominal Coupling (dB)	Max. Coupling Variation (dB)	Min. Directivity (dB)	SWR Primary Line Max. (50Ω Nom.)
772D	2 to 18	20	± 1.0	$\begin{aligned} & 2 \text { to } 12.4: 30 \\ & 12.4 \text { to } 18: 27 \end{aligned}$	$\begin{aligned} & \text { 2 to 12.4: } 1.28 \\ & \text { 12.4 to } 18: 1.4 \end{aligned}$
773D	2 to 18	20	± 1.0	$\begin{aligned} & \text { 2 to } 12.4: 30 \\ & 12.4 \text { to } 18: 27 \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.27 \end{aligned}$
$775{ }^{1}$	0.45 to 0.94	20	± 1	40	1.15
776D ${ }^{1}$	0.94 to 1.9	20	± 1	40	1.15
777D	1.9 to 4	20	± 0.4	30	1.2
778D	0.1 to 2	20	± 1.5	$\begin{aligned} & 0.1 \text { to } 1 \mathrm{GHz}: 36^{2} \\ & 1 \text { to } 2 \mathrm{GHz}: 32^{2} \end{aligned}$	1.1
779D	1.7 to 12.4	20	± 0.75	$\begin{aligned} & 1.7 \text { to } 4 \mathrm{GHz}: 30 \\ & 4 \text { to } 12.4 \mathrm{GHz}: 26 \end{aligned}$	1.2
11691D	2 to 18	20	± 1.0	2 to $8 \mathrm{GHz}: 30^{4}$ (supplies only at 8 GHz to 15 GHz$)$ 8 to 18 GHz: 26^{3}	1.3 1.5
11692D	2 to 18	20	± 1 incident to test port	$\begin{aligned} & 2 \text { to } 8 \mathrm{GHz}: 30^{5} \\ & 8 \text { to } 18 \mathrm{GHz}: 26^{3} \end{aligned}$	$\begin{aligned} & 2 \text { to } 12.4 \mathrm{GHz}: 1.3 \\ & 12.4 \text { to } 18 \mathrm{GHz}: 1.4 \end{aligned}$

Maximum auxiliary arm tracking: 0.3 dB for $776 \mathrm{D} ; 0.5 \mathrm{~dB}$ for 777D.
$30 \mathrm{~dB}, 0.1$ to 2 GHz , input port.
24 dB with Type-N connector on the test port (11692D) or on the input port (11691D).
Directivity at input port.
Directivity at test port; at input port directivity is $21 \mathrm{~dB} ; 2$ to 18 GHz .

87302C, 87303C, and 87304C Hybrid Power Dividers

The 87302C, 87303C, and 87304C power dividers are compact, hybrid microwave couplers designed for power splitting applications that require minimal insertion loss and high isolation.

The 87302C covers the entire 0.5 to 26.5 GHz frequency range with a maximum insertion loss of 1.9 dB . The 87303C and 87304C cover the frequency range of 1 to 26.5 GHz and 2 to 26.5 GHz with an even lower insertion loss of 1.6 dB and 1.4 dB , respectively. These hybrid power dividers are excellent for any application requiring low loss power division. They typically exhibit an insertion loss that is 1 to 2 dB lower than an equivalent resistive power divider.

Model	Freq. Range (GHz)	Band Segments	Insertion Loss (dB)	Isolation (dB)
$\mathbf{8 7 3 0 2 C}$	0.5 to 26.5	0.5 to 18 GHz	1.5	19
		18 to 26 GHz	1.9	19
$\mathbf{8 7 3 0 3 C}$	1.0 to 26.5	1.0 to 18 GHz	1.2	19
		18 to 26.5 GHz	1.6	21
$\mathbf{8 7 3 0 4 C}$	2.0 to 26.5	2.0 to 18 GHz	1.1	19
		18 to 26.5 GHz	1.4	18

Power Rating: $10 \mathrm{~W}, \mathrm{CW}$ (2:1 maximum SWR)
Connectors: $3.5 \mathrm{~mm}(\mathrm{f})$, SMA compatible

[^0]: ${ }^{1}$ Typical insertion loss.

[^1]: Attenuators
 84904K 0 to $11 \mathrm{~dB}, 1 \mathrm{~dB}$ steps, 26.5 GHz
 84904L 0 to $11 \mathrm{~dB}, 1 \mathrm{~dB}$ steps, 40 GHz
 84904M 0 to $11 \mathrm{~dB}, 1 \mathrm{~dB}$ steps, 50 GHz
 84905M 0 to $60 \mathrm{~dB}, 10 \mathrm{~dB}$ steps, 50 GHz
 84908M 0 to $65 \mathrm{~dB}, 5 \mathrm{~dB}$ steps, 50 GHz
 84906K 0 to $90 \mathrm{~dB}, 10 \mathrm{~dB}$ steps, 26.5 GHz 84906L 0 to $90 \mathrm{~dB}, 10 \mathrm{~dB}$ steps, 40 GHz
 84907 K 0 to $70 \mathrm{~dB}, 10 \mathrm{~dB}$ steps, 26.5 GHz
 84907 L 0 to $70 \mathrm{~dB}, 10 \mathrm{~dB}$ steps, 40 GHz
 84907L-006 Female 2.92-mm Connectors (L models only)
 84907L-011 5 Vdc Supply Voltage
 84907L-015 15 Vdc Supply Voltage
 84907L-024 24 Vdc Supply Voltage
 84907L-100 Male 2.4-mm Connector (L models only)
 84907L-104 Male 3.5-mm Connector (K models only)
 84907L-106 Male 2.92-mm Connector (L models only)
 84907L-UK6 Commercial Calibration Test Data with Certificate

[^2]: ${ }^{1}$ Defined as ± 0.5 from ideal square law response.
 ${ }^{2}$ Option 001 provides two matched detectors.

[^3]: For more information, visit our web site: www.agilent.com/find/mta

